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Figure 1: An overview of our proposed model for visually guided self-supervised audio representation learning. During
training, we generate a video from a still face image and the corresponding audio and optimize the reconstruction loss. An
optional audio self-supervised loss can be added to the total to enable multi-modal self-supervision. During testing, we use
the audio encoder to extract features for (or finetune on) downstream audio-only tasks.

1. Introduction

Self-supervised learning has attracted plenty of recent
research interest. However, most works are typically uni-
modal and there has been limited work that studies the
interaction between audio and visual modalities for self-
supervised learning. This work 1 (1) investigates visual self-
supervision via face reconstruction to guide the learning
of audio representations; (2) proposes two audio-only self-
supervision approaches for speech representation learning;
(3) shows that a multi-task combination of the proposed

1Work first published at ICASSP 2020, May 4 - 8, 2020, ex-
tended version submitted to IEEE Transactions on Affective Comput-
ing in May 2020, website: https://sites.google.com/view/
visually-guided-speech

visual and audio self-supervision is beneficial for learning
richer features that are more robust in noisy conditions; (4)
shows that self-supervised pretraining leads to a superior
weight initialization, which is especially useful to prevent
overfitting and lead to faster model convergence on smaller
sized datasets. We evaluate our audio representations for
emotion and speech recognition, achieving state of the art
performance for both problems. Our results demonstrate the
potential of visual self-supervision for audio feature learn-
ing and suggest that joint visual and audio self-supervision
leads to more informative speech representations.

In this work, we investigate self-supervised learning for
audio. Audio representations are a cornerstone of speech
and affect recognition. Self-supervised learning may offer
better representations for these applications, especially in
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Figure 2: A detailed illustration of our the encoder-decoder model we use for video reconstruction. From an unlabeled
sample of audiovisual speech, we use the audio and the first frame of the video (t = 0) to generate a video with t frames. The
model contains: (1) an identity encoder which produces a 64-D identity embedding; (2) an audio encoder which converts the
input audio (t frames of 80 dimensional log mel spectrograms) into a 512-D audio embedding; (3) a frame decoder which
generates video from the concatenated latent representation using transposed convolutions.

cases where labeled data is hard to come by and unlabeled
audio data is readily available. Most existing approaches are
unimodal (audio-only). The few cross-modal approaches
[4, 1] typically have some interaction between the modal-
ities in the latent space by pretext tasks like clustering but
they do not produce an intuitive interaction between the two
modalities (especially in the context of audiovisual speech
by using facial information). By contrast, our work pro-
poses audio features that are explicitly guided by lip move-
ments and facial expressions’ reconstruction (see Fig. 1).
We impicitly capture visual information related to lip move-
ments and facial expressions in the audio features. The vi-
sual modality is needed only during training and our audio
features can be evaluated on audio-only datasets.

2. Methods
2.1. Visual-only self-supervision via facial recon-

struction (L1)

The proposed method is illustrated in Fig. 1 and is based
on prior work on visually guided speech representation
learning through speech-driven facial animation [9, 8, 7].
The model is a temporal encoder-decoder which takes a still
image of a face (frame from a 25 fps video) and an audio
signal as inputs and generates video frames from these. The
model itself can be conceptually divided into three subnet-
works (see Fig. 1 and Fig. 2), namely the content/audio
encoder (3 layer GRU), the identity encoder (6 layer 2D

CNN) and the frame decoder (with skip connections from
the identity encoder).

The architecture of the content encoder is a 3 layer GRU
with log mel spectrograms as input (closely following [2]),
as shown in Fig. 2. The log mel spectrogram is computed
with 80 frequency bins, a window width of 25ms and a
stride of 10ms. It is converted into a latent representation
with dimensionality (t, 512) zaud. Similarly, the identity
encoder (see Fig. 2 top-left), which is made of 6 (Conv2D
- BatchNorm - ReLU) blocks, reduces a 64x128 input im-
age (which is the first video frame of the audiovisual speech
segment) to a 64x1 feature vector zid.

We also use a noise generator (see Fig. 1) capable of pro-
ducing noise that is temporally coherent. A 10 dimensional
vector is sampled from a Gaussian distribution with mean 0
and variance of 0.33 and passed through a single-layer GRU
to produce the noise sequence. This latent representation zn
accounts for randomness in the face synthesis process (such
as the generation of random sequential behaviour like blinks
[10]), which leads to a more realistic facial reconstruction.

The latent representation is the concatenation of
zaud, zid and zn (as shown in Fig. 2). This results in a
586 dimensional embedding. This embedding then goes
through the frame decoder (see Fig. 2 top-right), which is
a CNN that uses strided transposed convolutions to produce
the video frames. The skip connections to the identity en-
coder help in preserving subject identity.

An L1 reconstruction loss between a random frame from



Figure 3: An overview of the proposed Odd One Out networks for audio representation learning. 25% of the input audio
batch is jumbled. The audio encoder is then trained on the self supervised task of predicting which clip is the ‘odd one out’.

the generated video and the corresponding frame from the
real video is used to train the network. The L1 loss on the
pixel level is commonly used in facial reconstruction as op-
posed to the L2 loss which typically produces blurrier re-
constructions. We use the Adam optimizer with a learning
rate of 0.06 that is decayed by a factor of 0.98 every 10
epochs. Essentially, our model aims to predict the video
modality (face reconstruction) given only the audio modal-
ity and speaker identity information from the first frame.
In this process, the audio encoder is driven to produce use-
ful speech features that correlate with mouth and facial
movements (because we need to generate these lip and fa-
cial movements using only the audio information, so the
features zaud must encode this in order to reduce the L1
loss). After this process of visually guided self-supervised
pretraining, we simply use the trained audio encoder as a
pretrained model for audio-only downstream tasks. The
features extracted from this model are especially interest-
ing to evaluate on tasks like speech recognition and emo-
tion recognition. This is because these features are explic-
itly trained (guided by the visual modality) to contain in-
formation related to lip movements (highly correlated with
speech) and facial expressions (highly correlated with emo-
tion).

2.2. Audio-only self-supervision (Odd One Out)

Odd One Out networks for video [3] are based on pre-
dicting which one out of multiple sets of ordered sequences
of frames is in jumbled order (temporally incorrect order).
The intuition behind such a method being able to learn use-
ful features is that while learning to predict the task, the
encoder learns useful audio features that differentiate be-
tween certain phonemes. Being able to predict temporal or-
der should drive the encoder to learn generic useful features
about the data. We adapt this idea to the audio modality in
a straightforward way as well. For a given input batch of
audio clips, we jumble 25% of the clips. The jumbling is
performed by selecting at random two windows of a length
of 15% of the total audio duration and swapping them. The
encoder is then tasked with predicting which element in the
input batch is the ’Odd One Out’, and is optimized using
cross entropy loss. Fig. 3 illustrates the training procedure

for Odd One Out networks for audio representation learn-
ing. We use the same audio encoder architecture as before
(Figure 2).

2.3. Audio-visual self-supervision (L1 + Odd)

We combine the proposed audio and visual self-
supervision methods by making the encoder jointly pre-
dict the visual self-supervision task and the audio self-
supervision task. Since we used the same encoder archi-
tecture for both the visual and audio tasks, this is straight-
forward to accomplish. In the pipeline shown in Fig. 1 for
visual self-supervision, we also use the optional prediction
for the audio-only self-supervised task (Odd). This leads to
two losses being calculated, one for visual and one for audio
self-supervision. The total loss Ltotal is the weighted sum
of the L1 reconstruction loss from visual self-supervision
Lvideo and the cross entropy loss from the audio-only self
supervision Laudio. α is the weight factor which controls
how much of the loss term comes from which type of su-
pervision (optimal value is 0.6 [7]). The total loss is given
by the equation:

Ltotal = αLvideo + (1− α)Laudio (1)

3. Results and Conclusion
We evaluate all features on emotion and speech recog-

nition. For a classification task (emotion recognition on
CREMA, Ravdess, IEMOCAP or word classification on
SPC), we use a 2 layer LSTM with 256 hidden units as
the classifier. For ASR on GRID with continuous text la-
bels, we use the ESPNet library with hybrid CTC/Attention.
Our results can be seen in Table 1. Additionally, we also
compare the L1, Odd and L1 + Odd methods under various
levels of artificially introduced noise on two datasets. The
results can be seen in Figures 4 and 5. Our results outper-
form existing self-supervised baselines on emotion recogni-
tion and speech recognition. We thus demonstrate the po-
tential of visual self-supervision by facial reconstruction in
audiovisual speech as a way to learn audio features. We
also show that joint audio-visual self-supervision is better
than either unimodal method. Additional details and a more
detailed discussion can be found in [7].



Self Supervised Methods Emotion Recognition Speech Recognition
Pretraining Dataset LRW LRW LRW LRW LRW
Evaluation Dataset CREMA-D Ravdess IEMOCAP GRID SPC

Classifier for (t, dim) features LSTM LSTM LSTM ESPNet LSTM
Labels 6 emotions 8 emotions 4 emotions ASR Text 30 words

Method Supervision Dim. Accuracy (↑) Accuracy (↑) Accuracy (↑) WER (↓) Accuracy (↑)
MFCC - 39 41.50 28.32 42.06 4.7 91.06

CPC [5] Audio 256 34.31 29.05 39.71 10.2 74.37
PASE [6] Audio 100 43.16 30.05 42.47 5.8 89.1
APC [2] Audio 512 41.30 34.36 41.19 5.5 87.7

Odd Audio 512 48.29 39.49 45.14 5.1 89.29
L1 Visual 512 51.09 46.05 46.34 4.5 90.05

L1 + Odd Audio+Visual 512 53.17 42.77 47.91 3.8 92.28

Table 1: Results for all baseline and proposed methods for discrete emotion recognition (on CREMA, Ravdess and IEMO-
CAP), and speech recognition (on GRID and SPC). All methods are used as frozen feature extractors before training a
classifier on the downstream task. Results in bold indicate the best performance for a particular type of self-supervision.

Figure 4: Emotion recog. on Crema under noise
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