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1. Introduction

We present a method for learning associations between
binaural sound signals and visual scenes. Our task is to train
a machine learning system that can turn binaural sound sig-
nals to 1) 3D depth maps and 2) grayscale images of plau-
sible layout of the scene ahead.

Solving this task can benefit robot navigation and ma-
chine vision with complementary information or enable a
new sensor modality in no-light conditions.

Our inspiration for this work comes from nature, where
bats, dolphins and whales utilize acoustic information heav-
ily. They adapted to environments where light is sparse.
Bats have evolved advanced ears (pinnae) that provides vi-
sion in the dark known as echolocation: They sense the
world by continuously emitting ultrasonic pulses and pro-
cess echos returned from the environment and prey. Like-
wise, humans suffering from vision loss have shown to de-
velop capabilities of echolocation using palatal clicks simi-
lar to dolphins, learning to sense obstacles in the 3D space
by listening to the returning echoes [6, [10].

Trying to harness sound for artificial systems, previous

Echos of

:r' Lgr&&w [\ :Environment
| Sounsi Chlﬁrps K \ A}‘ﬁ
—aL ww ﬁ

nght Ear. 4 » r

{\, .
95% =

Figure 1. The BatVision [1]] system learns to generate visual scenes
by just listening to echos with two ears. Mounted on a model
car, the system has two microphones embedded into artificial hu-
man ears, a speaker, and a stereo camera which is only used dur-
ing training for providing visual image ground-truth. The speaker
emits sound chirps in an office space and the microphones receive
echos returned from the environment. The camera captures stereo
image pairs, based on which depth maps can be calculated.
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work also mimics parts of biological systems. By using an
artificial pinnae pair of bats, highly reflecting ultrasonic tar-
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Figure 2. Generalized Cross-Correlation Features (GCC) con-
tribute largely to improved reconstruction performance. Each left
and right waveform is independently correlated (*) with the sent
chirp signal (see equationEI). Using only these features as input in
our network shows clearer depth and grayscale images with less
artifacts and a more plausible room layout.



Figure 3. Overview of our dataset by [lI]]. Training and validation
data is collected in separate areas of the same floor, whereas the
test data comes from another floor and has different obstacles and
decorations.

gets in the 3D space were located. The ears act as complex
direction-dependent spectral filters and head-related trans-
fer functions have been modelled to better mimic how a
particular ear (left or right) receives sound from a point in
space [9,[7]].

We investigate how to visualize the full 3D layout ahead
only from binaural echos, recorded from microphones in
artificial ears. Sound chirps are played from a speaker into
the environment which we also record with a stereo cam-
era. With the time-paired data of generated depth-images
and echos, we train a network to predict the former from
the latter. As a proof of concept we also predict monocular
grayscale images with the objective of generating plausible
layout of free space and obstacles. We show an overview of
our proposed system in Fig. m

Our contribution is an enhanced sound-to-visual system
using generalized cross-correlation (GCC) features which
we compare to raw waveforms and spectrograms as input
encoding (cmp. Fig. [2). We further show the advantage
of Residual-in-Residual Dense Blocks [1L1] for the gen-
erator in our architecture. We also introduce spectral nor-
malization [8]] to the PatchGAN [4] discriminator to replace
batch normalization and empirically observe a more stabi-
lized training process.

2. Audio-Visual Dataset

We use the same dataset as in [L], containing time-
synchronized binaural audio, RGB images and depth maps
for learning associations between sound and vision. The
data has been collected using off-the-shelf, low-cost hard-
ware fitted to a small model car, as shown in Fig. m Train-
ing, Validation and Test data was collected at different loca-
tions of an indoor office with hallways, conference rooms,
offices and open areas. The data and collection locations are
shown in Fig.[3] We refer to [[1] for more details on signal
generation, data collection, hardware and preparation.

GCC Features. @ We calculate generalized cross-
correlation features for pairs of one input channel (left or
right ear) respectively and our chirp source waveform:
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where X;(f) and X, (f) are our left and right wave-
form represented in the frequency domain, S(f) is our
chirp source (described in [1]) in the frequency domain
padded to the same length as X (f) (* denotes the complex
conjugate). Transformations between the original time-
domain and the frequency-domain are obtained by apply-
ing the Fourier transformation. The time-domain general-
ized cross-correlation values are then obtained by apply-
ing the inverse Fourier transformation on G;(f) and G,-(f).
This is currently a pre-processing step carried out using the
gccphat tool in MATLAB. In Fig. 2]we show a paired raw
waveform sample and its corresponding GCC feature val-
ues. The time-series cross-correlation values are then fed to
the network, concatenated along the channel dimension.

3. Proposed Method

Network Architecture. As shown in our network ar-
chitecture overview in Fig.[d] we keep the high-level design
of BatVision. We suggest the following modifications for
improving the model and obtaining a more stable training
process. First, we modify the input to the audio encoder to
generalized cross-correlation features rather than raw wave-
forms or spectrograms of binaural audio signals. Second,
we re-model the generator and base it on residual learning
using Residual-in-Residual Dense Blocks [11]. Third, we
replace batch normalization in the discriminator with spec-
tral normalization [8]] and propose a suitable weight factor
) for the adversarial loss. With these modifications, we ob-
serve improved reconstruction results with less artifacts and
a more stable training process than in the original model.
Please see [1] for details on the original architecture.

The full learning objective of our model is:

I’Ignmgx Laan(D) 4+ AMagan(G)+ L1, (G). (2)
Lcan is a least-squares adversarial loss, £, a L regres-
sion loss and A a weight factor.

Evaluation Metrics. For evaluating our predicted depth
maps we use a common evaluation method for depth mea-
surements as proposed in [2]. It consist of five evaluation
indicators:
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Table 1. Depth results on our test dataset.

Lower is better

Accuracy: higher is better

AbsRel SqRel RMSE RMSELog | § <1.25' 4§ <125% §<1.25°

BatVision [1] + Waveforms 1.670 0.488  0.259 3.118 0.249 0.359 0.484
BatVision [1]] + Spectrograms 1.544 0.398 0.241 3.177 0.256 0.369 0.521
BatVision [1] + GCC 1.782 0464  0.252 3.231 0.236 0.330 0.454
Ours + Waveforms 1.839 0472  0.245 3.253 0.252 0.357 0.471
Ours + GCC 1.542 0.454  0.235 3.168 0.290 0.424 0.556

is randomized in time by 30%. The center start position

is chosen so that always one complete chirp and its echos
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Figure 4. Our sound to vision network architecture. The tempo-
ral convolutional audio encoder A turns the binaural input into a
latent audio feature vector, based on which the visual generator
G predicts the scene depth map. The discriminator D compares
the prediction with the ground-truth and enforces high-frequency
structure reconstruction at the patch level.

Generator

e RMSE = \/ﬁ Sien lldi — |2,

e RMSE Log = \/\le Sien |[log(d;) — log(d:)|[2,

*

e Accuracies: % of d; s.t. max (g— Z—i) =0 < thr,
where |N| is the total number of pixel with real-depth val-
ues, d; is the predicted depth value of pixel ¢ and d; is the
ground truth depth value. Finally, thr denotes a threshold.

During training we check generated samples constantly
in addition to the L; regression loss of our generator be-
cause better perceptual quality of the predictions does not
always correspond to lower L. This is especially true when
training in the GAN framework.

4. Experiments

We perform all experiments using the same model and
hyper-parameters for depth map and grayscale prediction.
Also, while training with waveforms or GCC-features we
apply the same two input augmentations. 1) We select a
window of constant size from the input which start position

is captured by the window. We follow the design choices
on the length of the window as in [1]] 2) We add Gaussian
noise X ~ N (1 =0,0% =[0,0.1)) to the signals. The
ground truth and predicted output of the model have a spa-
tial size of 128 x 128. For our generator, we use a total of 8
Residual-in-Residual Blocks in the low-resolution domain.
We follow with a set of up-sampling and convolutional lay-
ers until the output resolution is reached. Up-sampling of
feature maps is by nearest-neighbor interpolation. We have
chosen a batch-size of 16 per GPU, a weight factor A of
1 x 10~! and a learning rate of 1 x 10~* for both the gener-
ator and discriminator. For optimization, we use Adam [3]]
with parameters 5; = 0.5 and B2 = 0.999. We alternately
update the discriminator and generator until the model gen-
erates accurate and visually pleasing results (approx. 100
iterations). We implement our model in the PyTorch frame-
work and train using NVIDIA RTX 2080 TI GPUs.

For a complete comparison we also evaluate the origi-
nal BatVision network architecture with our proposed GCC-
features and our proposed architecture with raw waveforms
as input. Using the depth evaluation metrics, we compare
depth prediction on the test set of all GAN model combina-
tions and show the results in Table [T} A comparison of all
trained models and input types is given in Table 2]

We observe that our model improves the original work of
BatVision in nearly all metrics and generates qualitatively
more accurate and less noisy predictions. In Fig. 5] we
present examples generated by our best model as indicated
by Table [2]and [I] Note that it is not possible to predict the
exact grayscale image of a scene because not all information
about appearance can be transported by sound. Rather the
goal is to reconstruct an image which shows plausible lay-
out in terms of free space and obstacles. Finally, when train-
ing both approaches we empirically find that our proposed
method is more stable during training and less affected by
small changes in hyper-parameters compared to BatVision.

5. Conclusions

We evaluated generalized cross-correlations features
over raw waveforms as input modality and novel model con-



Table 2. L loss on the test set for depth map and grayscale gener-
ation for different network configurations.

Arch. + Input | Ly Loss
Depth Map ‘ Gen. Only ‘ GAN

BatVision [1] + Waveforms 0.0880 0.0930

BatVision [1]] + Spectrograms 0.0742 0.0878

BatVision + GCC 0.0678 0.0758

Ours + Waveforms 0.0698 0.0773

Ours + GCC 0.0645 0.0732
Grayscale GAN

BatVision [1]] + Waveforms 0.2018

BatVision [1]] + Spectrograms 0.1841

Ours + GCC 0.1770

GT Depth Map. Ours BatVision [1]  GT Grayscale Ours BatVision [1]

Figure 5. Test sample reconstructions. Columns 1 and 4 show the
ground truth depth map and grayscale scene image. The remaining
columns show predictions from result from our method and BatVi-
sion [1]]. Overall, our generations show correct mapping of close
and distant areas with less noise and more smooth reconstruction

than the BatVision method.

figurations for BatVision [1]]. With Residual-in-Residual
Dense Blocks in the generator and spectral normalization in

the discriminator we achieve major quantitative and qualita-
tive improvements. Apart from better scores on the evalua-
tion metric, reconstructed depth and grayscale images show
significantly better perceptual quality. The results in this
work show as proof-of-concept the potential information,
contained in sound. Complementary to vision we argue it
can be useful in many tasks, either as exclusive or addi-
tional sensor input or to guide machine learning, as recently
well presented in concurrent work [3]].
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