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Abstract

Multimodal self-supervised learning is getting more and
more attention as it allows not only to train large networks
without human supervision but also to search and retrieve
data across various modalities. In this context, this paper
proposes a self-supervised training framework that learns
a common multimodal embedding space that, in addition to
sharing representations across different modalities, enforces
a grouping of semantically similar instances. To this end,
we extend the concept of instance-level contrastive learning
with a multimodal clustering step in the training pipeline
to capture semantic similarities across modalities. The re-
sulting embedding space enables retrieval of samples across
all modalities, even from unseen datasets and different do-
mains. To evaluate our approach, we train our model on the
HowTo100M dataset and evaluate its zero-shot retrieval ca-
pabilities in two challenging domains, namely text-to-video
retrieval, and temporal action localization, showing state-of-
the-art results on four different datasets.

1. Introduction
To robustly learn visual events and concepts, humans

seldom rely on visual inputs alone. Instead, a rich multi-
modal environment is utilized for understanding by combin-
ing multiple sensory signals along with various language
representations. In this work, we focus on the problem of
learning a joint embedding space across multiple modalities.
Given that the features from different modalities are often
not comparable, the goal is to learn the projections into a
common space where features from different domains but
with similar content are close to each other to allow for a
direct retrieval across modalities.

To deal with multimodal data of this nature, several recent
approaches use a contrastive loss to learn e.g. feature repre-
sentations in a joint embedding space. The goal is to bring
samples drawn from the same temporal instance closer to
each other while keeping samples from different times apart.
One problem arising from the contrastive loss is that this
criterion does not consider the samples’ semantic structure

Figure 1: The Multimodal Clustering Network (MCN) com-
bines a contrastive loss that learns feature representations to
be close across different modalities such as video, audio, and
text (blue box), with a clustering loss that draws instances
that are semantically related together, e.g., scenes depicting
the same semantic concept (e.g., chopping or frying) from
different videos or different clips. (yellow box).

and similarity at different times: two samples are treated
as a negative pair as long as they occur at different times
regardless of their semantic similarity. This can have a con-
siderable adverse impact on the learned representation. In
a different formulation for learning representations, instead
of comparing individual instances, clusters of instances are
first created using a certain clustering algorithm [1]. This
approach encourages samples semantically similar to each
other (namely, samples in the same cluster) to be close in
the embedding space. However, if we cluster features from



multi-modalities, those clusters would likely emerge only
within the modalities separately, clustering audio instances
with audio instances, visuals to visuals etc. Therefore, a
mechanism that pulls the instances from different modalities
together is crucial to cluster features from different modal-
ities in a joint space. This leads to our proposed method
Multimodal Clustering Network (MCN) that treats these two
approaches as reciprocal information. Figure 1 provides a
high-level overview of our approach.

To evaluate our proposed method, we address the chal-
lenging problem of zero-shot learning in two contexts: multi-
modal video retrieval and multimodal temporal action local-
ization. We train our system on the HowTo100M dataset[9]
and evaluate on various downstream tasks. MCN signifi-
cantly outperforms the best text-to-video retrieval baseline
over absolute 3% in recall and outperforms the temporal
action localization baseline over 3.1% in recall, both in zero-
shot settings.

2. Learning to Cluster Multimodal Data
To effectively construct a joint representation space from

unlabeled narrated videos, we start with n narrated video
clips. Each video clip is associated with its corresponding
visual representation, audio representation and text narration.
Given this input, the joint embedding space is learned, where
the embeddings of video clips with semantically similar
visual, audio, and text content are close to each other and
apart when the content is dissimilar, as illustrated in Figure 1.

Using notation as in [10], let denote video v ∈ V as it’s
corresponding visual representation, let a ∈ A denote its cor-
responding audio and t ∈ T , its matching text narration gen-
erated using an automatic speech recognition (ASR) system.
Given a set of n tuples of associated video, audio and text
narrations {(vi, ai, ti)}ni=1 ∈ (V×A×T )n, as shown in Fig-
ure 2 (a), we first construct three parametrized mappings that
derive embedding representations from the original video,
audio and text signals. Transform f : V → Rd derives a
d-dimensional embedding representation f(v) ∈ Rd from
a video clip v, transforms g : A → Rd and h : T → Rd,
produce similar d-dimensional audio and text embeddings:
g(a) = z ∈ Rd and h(t) ∈ Rd. More details about model
architectures are in Section 3.

Next, we introduce three loss functions to guide and prop-
erly situate these embeddings in the joint embedding space.
The final model is trained to minimize sum of these losses.

L = LMMS + LCluster + LReconstruct (1)

2.1. Contrastive Loss for Learning Joint Spaces

To learn a joint space for the three modalities, we
compute a contrastive loss on all pairs of modalities,
(v, t), (t, a), (a, v), as shown in Figure 2 (b). This loss maxi-
mizes the similarity between representations corresponding

to any two modalities from the same instance (video clip)
while minimizing the similarity of imposter pairs from the
two modalities from one clip of video to another. In this
work, we use the Masked Margin Softmax (MMS) func-
tion [6], which learned embedding vectors’ dot product
within a batch B. Features from each of the three modali-
ties {V,A, T} are assembled for each batch. The total con-
trastive loss LMMS is the sum of pairwise losses using each
of the three modalities:

LMMS = Lta + Lvt + Lva (2)

where Lta, Lvt, Lva represent the loss associated with pair-
wise modalities (t, a), (v, t), (a, v) respectively. For a pair
of modalities, for example the text and audio modalities, the
individual loss Lta is in turn given as:

Lta = − 1
B

B∑
i=1

[(
log eh(ti)·g(ai)−δ

eh(ti)·g(ai)−δ +
B∑
k=1
k 6=i

eh(timp
k )·g(ai)

)
(3)

+

(
log eh(ti)·g(ai)−δ

eh(ti)·g(ai)−δ +
B∑
j=1
j 6=i

eh(ti)·g(aimp
j )

)]

where aimpj represents imposter pairs from two modalities
that are sampled from a batch but do not co-occur. By
projecting all features to the same space and ensuring that
the features across different modalities are comparable.

2.2. Clustering Multimodal Features

To ensure that representations of semantically related
instances are close in the learned joint multimodal space, a
clustering step is included as part of the training process.
Online K-means clustering. We applied standard cluster-
ing algorithm k-means that takes a set of vectors as input, in
our case, the features M produced by the fused multimodal
feature:

M = (f(v) + g(a) + h(t))/3 (4)
where we take the mean over features from three modalities
to represent a multimodal instance. We cluster them into k
distinct groups. More precisely, it outputs a d× k centroid
matrix C = {µ1, .., µk} and the cluster assignments yn
of each multimodal instance n are defined by solving the
following problem:

min
C∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k

‖Mn − Cyn‖22 (5)

We then acquire a centroid matrix C∗ and a set of assign-
ments (y∗n)n≤N .
Semantic centroid learning. To learn the features closer to
its multimodal semantic centroids. We proposed to use the



Figure 2: Illustration of our proposed framework. Our framework comprises four parts: (a) Extracting features from several
modalities and projecting them into joint space. (b) Calculating contrastive loss pairwise to pull the features close across
modalities. (c) Performing multimodal clustering across features from different domains in a batch. (d) Performing joint
prediction across features to multimodal centroids to bring together semantically similar embeddings. (e) Reconstruction loss
for regularization. Best viewed in color.

centroid as a contrastive loss reference target. This target
pulls the features from three modalities closer to the centroid
that is close to their multimodal instance feature Mn and
pushes the features far away from the other centroid. For
each modality, for example, the text modalities, the individ-
ual loss Lt is in turn given as:

Lt = − 1
B

B∑
i=1

log eh(ti)·µ′−δ
K∑
k=1

eh(ti)·µk

(6)

where µ′ is the nearest centroid for the multimodal instance
feature Mi and µ′. We later sum over the loss from three
modalities:

LCluster = Lv + La + Lt (7)

In the end, the projected features learn to be closer to its
centroid feature among the three and also learns to be closer
in similar semantics.
Multimodal features reconstruction. We performed a re-
construction loss on top of the common space features from
three modalities to stabilize the feature training during clus-
tering. For each modality, for example, the visual modalities,
the individual loss Lv′ is in turn given as:

Lv′ = − 1
B

B∑
i=1

‖f ′(v)− f(v)‖2 (8)

where f ′(v) represented the reconstructed features by feed-
ing v into two linear layers as encoder and decoder. We then
sum the loss over each modality:

LReconstruct = Lv′ + La′ + Lt′ (9)

3. Experiments

3.1. Implementation details

For the visual branch of the proposed MCN model we
follow [9] and use 2D features from a ResNet-152 model [5],
along with features from a ResNeXt-101 model [3]. For the
audio branch of the network, we compute log-mel spectro-
grams and use a pre-trained DAVEnet model [4] to extract
audio features. For the textual branch, the feature extraction
process proposed in [9] is adopted to extract text representa-
tions: a GoogleNews pre-trained Word2vec model provides
word embeddings., followed by a max-pooling over words
in a given sentence to extract a sentence embedding.

3.2. Datasets

Training Dataset. Our models are trained on the
HowTo100M [9] instructional video dataset, which contains
1.2M videos along with their corresponding audio that con-
sists of speech and environmental sound and automatically
generated speech transcriptions.
Downstream Datasets. For text-to-video retrieval, we eval-
uate our representations on the following two datasets. The
YouCook2 [11] dataset contains 3.5K cooking instruction
video clips with text descriptions collected from YouTube.
The MSR-VTT [2] dataset contains 10K human annotated
video clip-caption pairs on various topics. For temporal
action localization, the following two datasets were eval-
uated: The CrossTask [13] dataset contains 2.7K instruc-
tional videos that cover various topics with manual annota-
tion for each frame. The Mining Youtube [8] dataset con-
tains 250 cooking videos, 50 of each task, that are densely
annotated.



YouCook2 MSRVTT

Method Mod Model TR R@1 R@5 R@10 R@1 R@5 R@10

Random - - 0.03 0.15 0.3 0.01 0.05 0.1
Miech [9] VT R152+RX101 N 6.1 17.3 24.8 7.2 19.2 28.0
MIL-NCE* [10] VT R152+RX101 N 8.1 23.3 32.3 8.4 23.2 32.4
MCN (ours) VAT R152+RX101 N 18.1 35.5 45.2 10.5 25.2 33.8

MMV FAC [7] VAT TSM-50x2 Y 11.7 33.4 45.4 9.3 23.0 31.1
MIL-NCE [10] VT S3D-G Y 15.1 38.0 51.2 9.9 24.0 32.4

Table 1: Comparison of text-to-video retrieval systems. Mod
indicates modality used, where V: video, A: audio, T: text.
TR indicates if a trainable backbone is used or not.

CrossTask MYT

Method Mod Model TR Recall IOD IOU Recall IOD IOU

Miech [9] VT R152+RX101 N 33.6 26.6 17.5 15.0 17.2 11.4
MIL-NCE* [10] VT R152+RX101 N 33.2 30.2 16.3 14.9 26.4 17.8
MCN (ours) VAT R152+RX101 N 35.1 33.6 22.2 18.1 32.0 23.1

ActBERT [12] VT R101+Res3D N 37.1 - - - - -
ActBERT [12] VT + Faster R-CNN N 41.4 - - - - -

MIL-NCE [10] VT S3D-G Y 40.5 - - - - -

Table 2: Evaluation of temporal action localization systems.

3.3. Downstream Tasks

Text-to-Video Retrieval. The goal of this task is to retrieve
the matching video from a pool of videos, given its ground
truth text query description. The model is tested on two video
description datasets and evaluated on recall metrics: R@1,
R@5, R@10. These evaluations are used to demonstrate
the effectiveness of the contrastive loss and learned joint
embedding space across three modalities.
Temporal action localization. The CrossTask [13] dataset
considers the task of clip level action detection. The perfor-
mance is reported as recall and computed as a ratio of the
correctly predicted clips over the total number of clips in the
video as used in [13]. The MiningYoutube [8] dataset con-
siders the task of frame-level temporal action segmentation.
Here, each test video is provided together with the respective
actions and their ordering, including the background. The
goal is to find the correct frame-wise segmentation of the
video given the action order. More information of the metric
and be found in the paper [8].

3.4. Comparison with State-of-the-art Methods

Zero-shot Video Retrieval. We first examine the results of
the text-to-video retrieval task (Table 1). To allow compa-
rability between different approaches, we use a fixed visual
feature extraction backbone as described in [9] whenever
possible. For the baseline MIL-NCE* [10], we apply their
training strategy on the same visual feature set we use.On
YouCook2, our model significantly outperforms prior works
on the same architecture and shows even competitive results
compared to models with trainable visual backbone (TR).
Zero-shot Action Localization. We examine the action
localization tasks in Table 2. Given each frame in the video,

we perform a zero-shot classification of the given labels
and calculate the recall. For CrossTask, our method outper-
forms state-of-the-art approaches for self-supervised learn-
ing [10, 9] . We also evaluate our model on the MiningY-
outube [13] temporal action localization benchmark. Our
method outperforms state-of-the-art approaches for both self-
supervised [10, 9] and weakly supervised [8] learning.

4. Conclusions

We have developed a novel self-supervised multimodal
clustering network that learns a common embedding space
by processing local (via a contrastive loss) and global (via a
clustering loss) semantic relationships present in multimodal
data. The multimodal clustering network is trained on a large
corpus of narrated videos without any manual annotations.
Our extensive experiments on multiple datasets show that
creating a joint video-audio-language embedding space with
a clustering loss is essential for self-supervised learning of
good video representations. Our approach can be extended
to more modalities such as optical flow or sentiment features
and applied to other multimodal datasets for learning joint
representation spaces without human annotation.
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