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Abstract
The objective of this work is to localize sound sources

that are visible in a video without using manual annota-
tions. Our key technical contribution is to show that, by
training the network to explicitly discriminate challenging
image fragments, even for images that do contain the object
emitting the sound, we can significantly boost the localiza-
tion performance. We introduce a mechanism to mine hard
samples and add them to a contrastive learning formulation
automatically. We show that our algorithm achieves state-
of-the-art performance on the popular Flickr SoundNet
dataset. Furthermore, we introduce the VGG-Sound Source
(VGG-SS) benchmark, a new set of annotations for the
recently-introduced VGG-Sound dataset, where the sound
sources visible in each video clip are explicitly marked with
bounding box annotations. This dataset is 20 times larger
than analogous existing ones, contains 5K videos spanning
over 200 categories, and, differently from Flickr SoundNet,
is video-based. On VGG-SS, we also show that our algo-
rithm achieves state-of-the-art performance against several
baselines.

1. Introduction

In this paper, we consider the problem of localizing ‘vi-
sual sounds’, i.e. visual objects that emit characteristics
sounds in videos. Inspired by prior works [2, 8, 14], we for-
mulate this as finding the correlation between the visual and
audio streams in videos. These papers have shown that not
only can this correlation be learned successfully, but that,
once this is done, the resulting convolutional neural net-
works can be ‘dissected’ to localize the sound source spa-
tially, thus imputing it to a specific object. However, other
than in the design of the architecture itself, there is little
in this prior work meant to improve the localization capa-
bilities of the resulting models. In particular, while several
models [1, 2, 14] do incorporate a form of spatial attention
which should also help to localize the sounding object as a
byproduct, these may still fail to provide a good coverage
of the object, often detecting too little or too much of it.

In order to address this issue, we propose a new training
scheme that explicitly seeks to spatially localize sounds in
video frames. Similar to object detection [17], in most cases
only a small region in the image contains an object of inter-
est, in our case a ‘sounding’ object, with the majority of the
image often being ‘background’ which is not linked to the
sound. Learning accurate object detectors involves explic-
itly seeking for these background regions, prioritizing those
that could be easily confused for the object of interest, also
called hard negatives [6, 7, 11, 13, 15, 17].

In order to incorporate hard evidence in our unsupervised
(or self-supervised) setting, we propose an automatic back-
ground mining technique through differentiable threshold-
ing, i.e. regions with low correlation to the given sound are
incorporated into a negatives set for contrastive learning.
We show that this simple change significantly boosts sound
localization performance on standard benchmarks, such as
Flickr SoundNet [14].

To further assess sound localization algorithms, we
also introduce a new benchmark (VGG-SS), based on the
recently-introduced VGG-Sound dataset [4],

2. Method
Our goal is to localize objects that make characteristic

sounds in videos, without using any manual annotation.
Similar to prior work [2], we use a two-stream network
to extract visual and audio representations from unlabelled
video. For localization, we compute the cosine similarity
between the audio representation and the visual represen-
tations extracted convolutionally at different spatial loca-
tions in the images. In this manner, we obtain a positive
signal that pulls together sounds and relevant spatial loca-
tions. For learning, we also need an opposite negative sig-
nal. A weak one is obtained by correlating the sound to
locations in other, likely irrelevant videos. Compared to
prior work [1, 2], our key contribution is to also explicitly
seek for hard negative locations that contain background or
non-sounding objects in the same images that contain the
sounding ones, leading to more selective and thus precise
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Figure 1: Architecture Overview. We use an audio-visual pair as input to a dual-stream network shown in (a), f(·; θ1) and
g(·; θ2), denoting the visual and audio feature extractor respectively. Cosine similarity between the audio vector and visual
feature map is then computed, giving us a heatmap of size 14 × 14. (b) demonstrates the soft threshold being applied twice
with different parameters, generating positive, negative regions. The final Tri-map are highlighed in (c).

localization. An overview of our architecture can be found
in Figure 1.

2.1. Audio-Visual Feature Representation

Given a short video clip withN visual frames and audio,
and considering the center frame as visual input, i.e. X =
{I, a}, I ∈ R3×Hv×Wv , a ∈ R1×Ha×Wa . Here, I refers
to the visual frame, and a to the spectrogram of the raw
audio waveform. In this manner, representations for both
modalities can be computed by means of CNNs, which we
denote respectively f(·; θ1) and g(·; θ2). For each videoXi,
we obtain visual and audio representations:

Vi = f(Ii; θ1), Vi ∈ Rc×h×w, (1)
Ai = g(ai; θ2), Ai ∈ Rc. (2)

2.2. Audio-Visual Correspondence

Given the video and audio representations of eqs. (1)
and (2), we put in correspondence the audio of clip i with
the image of clip j by computing the cosine similarity of the
representations, using the audio as a probe vector:

[Si→j ]uv =
〈Ai, [Vj ]:uv〉
‖Ai‖ ‖[Vi]:uv‖

, uv ∈ [h]× [w].

2.3. Self-supervised Audio-Visual Localization

In this section, we describe a simple approach to con-
tinuously bootstrap the model to achieve better localization
results. At a high level, the proposed idea inherits the spirit
of self-training, where predictions are treated as pseudo-
ground-truth for re-training.

Specifically, given a dataset D = {X1, X2, . . . , Xk}
where only audio-visual pairs are available (but not the
masks mi). To get the pseudo-ground-truth mask m̂i, we

could simply threshold the map Si→i:

m̂i =

{
1, if Si→i ≥ ε
0, otherwise

Clearly, however, this thresholding, which uses the Heav-
iside function, is not differentiable. Next, we address this
issue by relaxing the thresholding operator.

Smoothing the Heaviside function. Here, we adopt a
smoothed thresholding operator in order to maintain the
end-to-end differentiability of the architecture:

m̂i = sigmoid((Si→i − ε)/τ)

where ε refers to the thresholding parameter, and τ de-
notes the temperature controlling the sharpness.

Handling uncertain regions. The pseudo-ground-truth
obtained from the model prediction may potentially be
noisy, we therefore propose to set up an “ignore” zone be-
tween the positive and negative regions, allowing the model
to self-tune. In the image segmentation literature, this is
often called a Tri-map and is also used for matting [5, 16].
Conveniently, this can be implemented by applying two dif-
ferent ε’s, one controlling the threshold for the positive part
and the other for the negative part of the Tri-map.



Training objective. while computing the positives and
negatives automatically, our final formulation are:

m̂ip = sigmoid((Si→i − εp)/τ)
m̂in = sigmoid((Si→i − εn)/τ)

Pi =
1

|m̂ip|
〈m̂ip, Si→i〉

Ni =
1

|1− m̂in|
〈1− m̂in, Si→i〉+

1

hw

∑
j 6=i

〈1, Si→j〉

L = −1

k

k∑
i=1

[
log

exp(Pi)

exp(Pi) + exp(Ni)

]
where εp and εn are two thresholding parameters (validated
in experiment section), with εp > εn. For example if we set
εp = 0.6 and εn = 0.4, regions with correspondence scores
above 0.6 are considered positive and bellow 0.4 negative,
while the areas falling within the [0.4, 0.6] range are treated
as “uncertain” regions and ignored during training.

3. Experiments
In the following sections, we describe the datasets, eval-

uation protocol and experimental details used to thoroughly
assess our method.

3.1. Training Data

For training our models, we consider two large-scale
audio-visual datasets, the widely used Flickr SoundNet
dataset and the recent VGG-Sound dataset, as detailed next.
Only the center frames of the raw videos are used for train-
ing. Note, other frames e.g. (3/4 of the video) are tried for
training, no considerable performance change is observed.

Flickr SoundNet: This dataset was initially proposed in [3]
and contains over 2 million unconstrained videos from
Flickr. For a fair comparison with recent work [10, 12, 14],
we follow the same data splits, conducting self-supervised
training with subsets of 10k or 144k image and audio pairs.

VGG-Sound: VGG-Sound was recently released with over
200k clips for 309 different sound categories. The dataset
is conveniently audio-visual, in the sense that the object
that emits sound is often visible in the corresponding video
clip, which naturally suits the task considered in this paper.
Again, to draw fair comparisons, we conduct experiments
with training sets consisting of image and audio pairs of
varying sizes, i.e. 10k, 144k and the full set.

3.2. Evaluation protocol

In order to quantitatively evaluate the proposed ap-
proach, we adopt the evaluation metrics used in [12, 14]:
Consensus Intersection over Union (cIoU) and Area Under
Curve (AUC) are reported for each model on two test sets,

as detailed next.

Flickr SoundNet Testset: Following [10, 12, 14], we re-
port performance on the 250 annotated image-audio pairs
of the Flickr SoundNet benchmark.
VGG-Sound Source (VGG-SS): We also re-implement
and train several baselines on VGG-Sound and evaluate
them on our proposed VGG-SS benchmark, a new testing
audio-visual localization benchmark with more than 5k
videos spanning more than 200 classes.

3.3. Implementation details

Audio inputs are 257 × 300 magnitude spectrograms.
The dimensions for the audio output from the audio encoder
CNN is a 512D vector, which is max-pooled from a feature
map of 17 × 13 × 512, where 17 and 13 refer to the fre-
quency and time dimension respectively. For the visual in-
put, we resize the image to a 224× 224× 3 tensor without
cropping. For both the visual and audio stream, we use a
lightweight ResNet18 [9] as a backbone. We use εp = 0.65
and εn = 0.4, τ = 0.03, that are picked by ablation study.

4. Results

In the following sections, we first compare our results
with recent work on both Flickr SoundNet and VGG-SS
dataset in detail. Then we conduct an ablation analysis
showing the importance of the hard negatives and the Tri-
map in self-supervised audio-visual localization.

4.1. Comparison on the Flickr SoundNet Test Set

In this section, we compare to recent approaches by
training on the same amount of data (using various differ-
ent datasets). As shown in Table 1, we first fix the train-
ing set to be Flickr SoundNet with 10k training samples
and compare our method with [2, 8, 12]. Our approach
clearly outperforms the best previous methods by a sub-
stantial gap (0.546 vs. 0.582). Second, we also train on
VGG-Sound using 10k random samples, which shows the
benefit of using VGG-Sound for training. Third, we switch
to a larger training set consisting of 144k samples, which
gives us a further 5% improvement compared to the previ-
ous state-of-the-art method [10]. In order to tease apart the
effect of various factors in our proposed approach, i.e. in-
troducing hard negative and using a Tri-map vs different
training sets, i.e. Flickr144k vs. VGG-Sound144k, we con-
duct an ablation study, as described next.
4.2. Comparison on VGG-Sound Source

In this section, we evaluate the models on the newly pro-
posed VGG-SS benchmark. As shown in Table 2, the CIoU
is reduced significantly for all models compared to the re-
sults in Table 1, showing that VGG-SS is a more diverse
and challenging benchmark than Flickr SoundNet. How-



Annotation Attetion10k (144k data) Ours (144k data)AV-object (10k data) Ours (10k data)

(a) Visualisation on Flickr SoundNet testset

Annotation Attetion10k (144k data) Ours (144k data)AV-object (10k data) Ours (10k data)

(b) Visualisation on VGG-SS testset

Figure 2: Qualitative results for models trained on various methods and data amount. The first column shows annotation
overlaid on images, the following two column shows predictions trained on 10k data and the last tow column show predictions
trained on 144k data. Our method has no false positives in the predictions as the hard negatives are penalised in the training.

Method Training set CIoU AUC

Attention10k [14] Flickr10k 0.436 0.449
CoarsetoFine [12] Flickr10k 0.522 0.496
AVObject [1] Flickr10k 0.546 0.504
Ours Flickr10k 0.582 0.525
Ours VGG-Sound10k 0.618 0.536

Attention10k [14] Flickr144k 0.660 0.558
DMC [10] Flickr144k 0.671 0.568
Ours Flickr144k 0.699 0.573
Ours VGG-Sound144k 0.719 0.582
Ours VGG-Sound Full 0.735 0.590

Table 1: Quantitative results on Flickr SoundNet testset. We
outperform all recent works using different training sets and
number of training data.

Method CIoU AUC

Attention10k [14] 0.185 0.302
AVobject [1] 0.297 0.357
Ours 0.344 0.382

Table 2: Quantitative results on the VGG-SS testset. All
models are trained on VGG-Sound 144k and tested on
VGG-SS.

ever, our proposed method still outperforms all other base-
line methods by a large margin of around 5%.

4.3. Qualitative results

We visualize the prediction results in Figure 2, and note
that the proposed method presents much cleaner heatmap
outputs. This once again indicates the benefits of consider-
ing hard negatives during training.

5. Conclusion
We revisit the problem of unsupervised visual sound

source localization and introduce a new large-scale bench-
mark called VGG-Sound Source. We also suggest a simple,
general and effective technique that significantly boosts the
performance of existing sound source locators, by explicitly
mining for hard negative image locations in the same image
that contains the sounding objecs. A careful implementa-
tion of this idea using Tri-maps and differentiable thresh-
olding allows us to significantly outperform the state of the
art.
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