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Abstract

Visually-grounded spoken language datasets can enable
models to learn cross-modal correspondences with very
weak supervision. However, modern audio-visual datasets
contain biases that undermine the real-world performance
of models trained on that data. We introduce Spoken Ob-
jectNet, which is designed to remove some of these biases
and provide a way to better evaluate how effectively models
will perform in real-world scenarios. This dataset expands
upon ObjectNet, which is a bias-controlled image dataset
with similar image classes to those present in ImageNet. We
detail our data collection pipeline, which features several
methods to improve caption quality, including automated
language model checks.

Lastly, we show baseline results on image retrieval and
audio retrieval tasks. These results show that models
trained on other datasets and then evaluated on Spoken
ObjectNet tend to perform poorly due to biases in other
datasets that the models have learned. We also show ev-
idence that the performance decrease is due to the dataset
controls, and not the transfer setting. We encourage readers
to check our full paper, which has been accepted to Inter-
speech 2021 and will be available publicly soon, for the full
details and more experiments.

1. Introduction

Prior work has shown that neural models can learn
meaningful audio-visual correspondences from visually
grounded speech [4, 3]. This mode of learning is inspired
by humans in early childhood, who learn to use speech to
describe the world before learning any written language. In
practice, this could allow audio-visual models to learn from
vast corpora of unlabeled images and videos.

However, many datasets in existence today, including
audio-visual datasets, contain intrinsic biases that the mod-
els trained on those datasets then learn, which in turn de-
grades their performance on real-world data. For exam-
ple, most images and videos uploaded to the Internet are
nicely lit, well-framed, and contain objects in their usual
settings. In turn, image captioning models are biased to-
wards describing people on beaches as happy and image
classification models don’t recognize wolves outside of a
snowy backdrop [6].

ObjectNet, a large-scale bias-controlled object classifi-

Figure 1. Samples of images, spoken captions, and ASR tran-
scripts from Spoken ObjectNet.

cation dataset, addressed these problems by collecting a
corpus of entirely new images instead of relying on those
already uploaded to the Internet in some form [1]. Workers
were asked to position a variety of household objects in a
certain way against a specified background. The viewpoint
of the camera was also controlled. In this way, ObjectNet
has systematic controls in place for some of the biases that
most other datasets exhibit.

In this work, we introduce Spoken ObjectNet (SON), a
large-scale corpus of spoken image descriptions based on
the ObjectNet dataset. Our dataset addresses some of the
biases present in existing audio-visual datasets. We intro-
duce our data collection pipeline, which includes a novel
language modeling step that increases the quality and ac-
ceptance rate of worker submissions. Lastly, we conduct
retrieval experiments to demonstrate that audio-visual mod-
els struggle to transfer to this bias-controlled domain, and
the decreased performance is due to the controls and not just
the transfer setting. We will release the dataset publicly.

2. Spoken ObjectNet Dataset Collection
To collect samples for this dataset, we extended the ap-

proach used to collect the Places Audio Caption dataset [3].
We released an Amazon Mechanical Turk (AMT) Human
Intelligence Task (HIT), which allowed workers to submit
captions for four images in the ObjectNet dataset at a time.
Workers were compensated $0.20 for four recordings that
passed our validation steps. Workers were prohibited from
submitting more than 3,000 HITs to prevent speaker bias
from impacting the dataset.



During data collection, workers were given an image and
asked to record themselves as if they were describing the
image to someone who could not see it. Workers were told
they could describe shapes, objects, locations, colors, and
anything else of interest as they saw fit. After each record-
ing was completed, we ran several validation steps on the
recorded audio to ensure that it met our requirements. If
a worker failed a validation step, they were immediately
asked to redo the recording. We found that providing this
feedback in real time, as opposed to rejecting the HIT out-
right hours or days later, increased the rate at which we
could collect high-quality samples and improved the expe-
rience for workers. After four recordings were completed,
workers could submit the assignment and proceed to the
next HIT.

2.1. Validation

Each recording had to pass three checks in order for the
worker to proceed to the next image. First, the recording
had to be at least 1s in duration. This prevented workers
from simply clicking through the screens as fast as possi-
ble in order to complete the task. The recording was also
run through the Google Speech Recognition API to gener-
ate an ASR transcript of the recording. We required that
each recording have at least four words in the transcript to
be accepted. This ensured the recording setup was function-
ing properly and that workers were actually speaking.

Lastly, we introduced a new step in which the ASR tran-
script was fed into a BERT model with a language model-
ing head. We used this model to produce a numerical score
to approximate how well-formed the ASR text was. The
model was a BertForMaskedLM model from the Python
Huggingface library [5], and our score is based on the cross
entropy loss between the model’s predictions based on the
masked input tokens and the ground truth tokens. Any tran-
script that scores above a certain threshold (where higher
scores are predicted to be less grammatical) failed the val-
idation step. Given the unusual contexts of the objects and
the potential for ASR errors, a low cutoff score could frus-
trate workers who were attempting to complete the task
properly, so we used existing collected samples to measure
a cutoff score that would prevent blatantly non-grammatical
captions from passing. Overall, this approach increased av-
erage caption quality, increased our HIT acceptance rate,
and reduced the amount of manual validation that was re-
quired.

2.2. Finalizing Splits

In total, we collected over 70,000 samples. One sam-
ple per image in ObjectNet was selected to form the Spo-
ken ObjectNet-50k dataset, with a total of 50,273 samples.
48,273 are included in the training set, and 1,000 are in-
cluded in both the validation and test sets. Samples are

Table 1. Transfer learning experiments from a model trained on
Places Audio. (1) No Fine-tuning (Zero-shot); (2) Fine-tuning
(Frozen image branch); (3) Fine-tuning (Trainable image branch).
I −→ A = image to audio; A −→ I = audio to image.

I −→ A A −→ I Mean

Setting R@1 R@10 R@1 R@10 R@1 R@10

(1) 0.019 0.096 0.033 0.140 0.026 0.118
(2) 0.040 0.216 0.048 0.213 0.044 0.214
(3) 0.102 0.391 0.115 0.416 0.108 0.403

shown in Figure 1.

3. Retrieval Experiments
3.1. Transfer from Places to Spoken ObjectNet

Because Spoken ObjectNet is best understood as a test
set relative to a dataset like Places Audio, we ran transfer
learning experiments with a model trained on Places au-
dio [2]. The original model is the best ResDAVEnet-VQ
model (without any VQ layers enabled) that was trained on
Places Audio Captions. This model achieved a mean R@10
of 0.735 [2] on the Places Audio validation set. There are
two ways in which Spoken ObjectNet can be used as a test
set: the first is for evaluating zero-shot performance (where
the model undergoes no fine-tuning on Spoken ObjectNet),
and the second is for evaluating performance after fine-
tuning with a frozen image branch (where only the audio
and embedding layers are fine-tuned). We also report the
results of an experiment in which the entire image branch
was made trainable and thus fine-tuned, strictly for compar-
ison, as this setting will be prohibited due to ObjectNet’s
license.

The results are shown in Table 1. In the zero-shot setting,
the model’s mean R@10 performance decreases from 0.735
on Places to 0.118 on Spoken ObjectNet. This shows that
the model trained on Places can be directly applied to Spo-
ken ObjectNet, but the performance is much lower. Fine-
tuning the model with a frozen image branch recovers some
of the performance, up to a 0.214 mean R@10. When the
image branch is made trainable, the performance increases
to a mean R@10 of 0.403. These experiments demonstrate
that the controls for viewpoint, rotation, and background
make it difficult for the image model (trained on Places Au-
dio) to meaningfully featurize the images in Spoken Object-
Net, as fine-tuning the embedding layers and audio model
without fine-tuning the entire image model was not enough
to recover the performance of the fully-trainable model.

4. Conclusion
We introduce Spoken ObjectNet as a bias-controlled spo-

ken language dataset designed to function as a “test set” for
audio-visual models. To use the dataset, we suggest training



an audio-visual model on some other dataset first. To eval-
uate the performance of the model in a bias-controlled set-
ting, evaluate the model on the provided 1,000 sample eval-
uation set. To account for the different classes in ObjectNet
and to therefore improve performance slightly, the model’s
embedding layers and audio model may be fine-tuned on
the Spoken ObjectNet training set. As with the original Ob-
jectNet dataset, training model parameters on the images is
prohibited.
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