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1. Introduction
Today’s image synthesis methods [7, 13] largely rely on

humans to specify their tasks. While recent work has in-
creased the flexibility of these systems by incorporating nat-
ural language instructions [1, 8, 11, 12], it can be challeng-
ing for language to capture important nuance. Audio, by
contrast, can often convey important distinctions that would
be ambiguous in language alone. For example, asking a
model to generate a “footstep in mud” is highly ambiguous;
specifying the sound of the footstep, on the other hand, con-
veys whether the mud is deep or shallow, how wet or dry it
is, and the force of the footstep.

In this work, we propose to translate the texture of vi-
sual objects in a scene to a new material, given only an
impact sound that specifies how the new material should
sound when it is struck. We call this task audio-visual ma-
terial conversion (Figure 1). Impact sounds are produced
by the interaction between different objects, and are highly
dependent on the materials of the objects and the forces in-
volved. They therefore provide useful information about
material properties and forces. The resulting video should
retain the structure of the original scene, while converting
the texture of the material to that of the sound.

To this end, our proposed method, i.e., Material Con-
verter, contains two distinct training objectives for convert-
ing texture and preserving structure, respectively. The first
objective involves a GAN loss that converts the texture of
a source video. The second objective leverages contrastive
learning to maximize the mutual information between the
source and converted videos, which aims to preserve the
object structure after conversion. These two objectives can
be jointly applied for end-to-end training.

Furthermore, the target material sound serves as an
audio-cue that controls the network to generate the corre-
sponding material texture. Since sounds of different mate-
rials are provided during training, our Material Converter
is able to convert object texture from one material to many
other materials based on the given sounds.

2. Material Converter
Regarding the task of audio-visual material conversion,

the general goal is to learn a video1 feature mapping from
the source video domain X to the target video domain

1To avoid confusion, the word “video” here refers to the visual modality
only, i.e., stack of frames, not the idiomatic meaning of a video which
involves both the visual and audio contents.

Audio-visual
Material 

Conversion

Instance-wise Paired

Figure 1. The schematic diagram of the audio-visual material con-
version task. Given a source video and target material audio as
input, this task aims to convert the source video to a new video
that corresponds to the target material audio. This is an example
where water is converted to grass.

Y , where Y is determined by the sound (audio cues) pro-
duced by various materials, denoted as the audio domainA.
To achieve this goal, we propose an unsupervised training
method called Material Converter, which can be trained on
unpaired video samples, i.e., the video pairs taken from X
and Y are not sharing content. This can be accomplished
through two distinct training objectives which will be de-
scribed in this section.

2.1. Texture Conversion via Adversarial Training
A popular solution for unpaired image texture conver-

sion is CycleGAN [13]. In contrast to CycleGAN that
leverages two GANs, our Material Converter only requires
a single GAN, which largely simplifies the training pro-
cess. Specifically, the generator network G can be di-
vided into two components, an encoder Genc followed by
a decoder Gdec. For a given dataset of unpaired video
instances X = {x ∈ X}, Y = {y ∈ Y}, and the
audio cues AY = {aY ∈ A} related to Y , Genc and
Gdec are applied sequentially to generate the output video
ŷ = Gdec(concat(Genc(x),aY )). An adversarial loss [4] is
then applied to encourage ŷ to approach the visual features,
i.e., the texture, of the target domain Y under the guidance
of aY :

LGAN(GX→Y , DY ) = Ey∼Y logD(y,aY )+

Ex∼X log (1−D(G(x,aY ),aY ))
(1)

where D is the discriminator network. Please note that the
fusion of two modalities in D is an early fusion, where
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Figure 2. An overview of the architecture of Material Converter. The patch-wise structure discriminator [10] is used to preserve object
structure, while the audio-visual texture discriminator is used to maintain object texture. This is an example where water puddle is converted
to grass lawn. The generated grass patch should match its corresponding input water patch, in comparison to other random patches.
Note that the MLP component has been ignored during inference.

the spectrogram feature of aY is concatenated to ŷ =
G(x,aY ) before feeding intoD. We empirically found that
such early fusion yields better results in terms of video qual-
ity.

2.2. Preserving Object Structure via Contrastive
Learning

In this task, a successfully synthesized video should be
equipped with the material texture of the target video while
fully preserving the structure of the source video. However,
both information, i.e., texture and structure information, are
inherently entangled within the learned feature, and adver-
sarial training can only guarantee texture transfer. One triv-
ial solution could be that we get the same video for any
inputs. Therefore, as shown in Figure 2, we introduce the
second training objective, based on noise contrastive esti-
mation (NCE) [5], which aims to preserve structure infor-
mation by establishing mutual correspondence between the
source and generated videos, x and ŷ respectively. Note
that this training objective is only employed to the encoder
network Genc, which is a multi-layer convolutional network
that transforms the source video into feature stacks at each
layer. In this way, we encourageGenc to abandon the texture
of the source material while preserving the structure of the
source video; then the job of the decoder network Gdec is to
add to the video the target material texture.

Given a “query” vector q, the fundamental objective in
contrastive learning is to optimize the probability of select-
ing the corresponding “positive” sample v+ amongN “neg-
ative” samples v−. The query, positive and N negatives are
transformed to M -dimensional vectors, i.e., q,v+ ∈ RM

and v− ∈ RN×M . This problem setting can be expressed

as a multi-classification task with N + 1 classes:

`(q,v+,v−) = − log

(
exp( q·v+

τ
)

exp( q·v+

τ
) + ΣNn=1 exp( q·v−

n
τ

)

)
(2)

where v−n denotes the n-th negative sample and τ is a tem-
perature parameter, as suggested in SimCLR [2], that scales
the similarity distance between q and other samples. The
crossentropy term in 2 represents the probability of match-
ing q with the corresponding positive sample v+. Thus, it-
eratively minimizing the negative log-crossentropy is equiv-
alent to establishing mutual correspondence between the
query space and the sample space.

In our task, we draw the N + 1 positive/negative sam-
ples from the the source video x ∈ X , and the query q is
selected from the generated video ŷ. From Figure 2, it can
be seen that the selected samples are “patches” that capture
local information among the video features. This setup is
motivated by the logical assumption that the global corre-
spondence between x and ŷ is determined by the local, i.e.,
patch-wise, correspondences.

Since the encoder Genc is a multi-layer convolutional
network that maps x into feature stacks after each layer,
we choose L layers and pass their feature stacks through a
small MLP network P . The output of P is P (Gl

enc(x)) =
{v1

l , ...,v
N
l ,v

N+1
l }, where l ∈ {1, 2..., L} denotes the in-

dex of the chosen encoder layers and Gl
enc(x) is the out-

put feature stack of the l-th layer. Similarly, we can obtain
the query set by encoding the generated spectrogram ŷ into
{q1

l , ..., q
N
l , q

N+1
l } = P (Gl

enc(ŷ)). Now we let vn
l ∈ RM

and v
(N+1)\n
l ∈ RN×M denote the corresponding positive

sample and the N negative samples, respectively, where n
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Figure 3. Quality results on the Greatest Hits dataset. Both input and output are extracted with 1 frame from videos for better presen-
tation. Since there are no baseline methods, we only show successful cases generated by Material Converter, namely water→grass and
water→gravel, in the first two categories. And the last category present some failure cases.

is the sample index and M is the channel size of P . By
referring to Eq. (2), our second training objective can be
expressed as:

LNCE(Genc, P,X) = Ex∼X

L∑
l=1

N+1∑
n=1

`(qn
l ,v

n
l ,v

(N+1)\n
l )

(3)
which is the average NCE loss from all L encoder layers.

2.3. Overall Objective

In addition to the two objectives discussed above,
we have also employed an identity loss Lidentity =
LNCE(Genc, P, Y ) which utilizes the NCE expression in Eq.
(3). By taking the NCE loss on the identity generation pro-
cess, i.e., generating ŷ from y, we are likely to prevent the
generator from making unexpected changes. Now we can
define our final training objective as:

Lfinal = LGAN(GX→Y , DY ) + λLNCE(Genc, P,X)+

µLNCE(Genc, P, Y )
(4)

where λ and µ are two parameters for adjusting the
strengths of the NCE and the identity loss.

2.4. Experiment

2.5. Experimental Setup

Dataset. The Greatest Hits dataset [9], which contains a
drumstick hitting, scratching, and poking different objects

in both indoor and outdoor scenes, was used to evaluate
our proposed model. Specifically, there are 977 videos
from indoor (64%) and outdoor scenes (36%). However,
since this dataset was first collected for the sound genera-
tion task, each video is somehow distinctive from the back-
ground scene, making it difficult to use for audio-visual
material conversion task directly. For example, dirt videos
are often accompanied with flowers, leaves, grass and grav-
els, spawning it difficult to identify the objects that need to
be converted. To mitigate this effect, we manually select
videos from 3 material classes, i.e., water, gravel and grass,
where the backgrounds are less diverse. Besides, collecting
more suitable data is a plan for our future direction.

Network architecture. The encoder and decoder of the
GAN generator are fully 3D convolutional networks, with
6 layers of ResNet-based CNN bottlenecks [6] in between.
The kernel size is set to 3×3×3 for all CNNs, and the stride
size depends on whether downsampling is required. While
for the discriminator, we applied the PatchGAN architec-
ture [7] as used in CycleGAN [13]. Besides, a ResNet18
[6] backbone is employed to extract features before feeding
to the decoder of the GAN generator. In addition, before
computing the contrastive loss, we first take intermediate
features with five different scales from the generator’s en-
coder, then a two-layer MLP with 256 units is applied for
each selected feature.



Training setting. We design a pre-processing paradigm
for training efficiency as follows: (1) each video is inter-
polated to 256×256 and sampled 32 frames uniformly be-
fore saving as images; (2) each audio is randomly cropped
or tiled to a fixed duration of 3s first, then converted to 16
kHz and 32-bit precision in floating-point PCM format. Fi-
nally, a 512-point discrete Fourier transform is performed
using nnAudio [3], with 25 ms frame length and 10 ms
frame-shift. Please note that only the magnitude spectro-
gram is taken to the decoder of the GAN and the audio back-
bone. When it comes to the hyper-parameters, our proposed
method was trained with a batch size of 1 and an initial
learning rate of 2e-4 for 200 epochs, using the Adam opti-
mizer. We only use random horizontal flip as the video data
augmentation. Other training schemes are kept the same as
those in the official implementation of CUT [10].

2.6. Results

Regarding this generative task, we have provided quali-
tative results here for a subjective evaluation, as presented
in Figure 3. Note that this is achieved by only a single Mate-
rial Converter that was given audios of different materials,
whose goal is to encourage the model to deduce a texture
choice for the corresponding material. Specifically, judging
from the first two categories that belong to water→grass
and water→gravel respectively, our Material Converter can
generate consistent videos, and gains the capability of one-
to-many conversion under the guidance of the audio cues.
However, the texture of the human arm and hand in Fig-
ure 3 are also converted towards the target material, sug-
gesting that our Material Converter has yet to possess the
ability of finding the object that needs to be converted from
the video. In other words, it drastically converts the entire
scene and we aim to solve this issue in future work.

Furthermore, the failure cases, which are mainly caused
by the indistinguishable material audio cues, are shown in
the last category in Figure 3. Interestingly, it turns out that
the generated videos are somewhat contrived, manifesting
that our Material Converter is prone to collapse when giving
ambiguous audio. Hence, it can be stated that the audio cues
matter a lot in terms of the conversion process.

3. Conclusion
In this paper, we introduce a novel task, i.e., audio-visual

material conversion, which aims to convert object material
texture corresponding to a given audio. To tackle this task,
we propose Material Converter, a contrastive-based audio-
visual GAN model, which can convert materials of visual
objects with audio cues. Experimental results on the Great-
est Hits dataset show that our Material Converter is able
to generate consistent videos given distinguishable material
audio. However, Material Converter will sometimes col-
lapse by giving ambiguous material audio. We hope our

work will shed new light on the cross-modal controllable
image-to-image translation field.
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