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1. Introduction
A cappella refers to a musical arrangement composed of

single or multiple singing voices without any instrumental
accompaniment. We are interested in isolating the target
voices of interest in multi-voice a cappella music videos.
The particular case of singing voice separation has been
largely explored in the context of separating voice from the
instrumental accompaniment. The timbral characteristics of
singing voice is clearly different from that of the accompa-
nying musical instruments. The audio-only models devel-
oped for separating the singing voice from the instrumen-
tal accompaniment (e.g. [12, 19]) largely benefit from this
difference. However, such models do not perform well in
the case of separating a particular voice from a mixture of
voices or when the volume of the desired target voice is
low. In fact, a very similar problem appears in speech sep-
aration when there are overlapping speech segments from
different sources in a speech mixture. The audio-visual
speech separation methods that leverage the visual informa-
tion to isolate the desired target speech have been shown to
outperform their audio-only counterparts [5, 7, 16]. Like-
wise, we are interested in improving upon the audio-only
singing voice separation method by incorporating the visual
information. We show that using the visual features is par-
ticularly advantageous in the singing voice separation task
when the volume of the desired target voice is lower than
the background sounds in the audio mixture and when there
are overlapping singing voices.

In the audio-visual speech separation works, there are
multiple ways in which the visual features are extracted, de-
pending on the front-end representation of the visual infor-
mation. Many of such works [1, 11, 16] operate directly on
the mouth region of the video input to extract the lip motion
features. In [15], the motion vectors of face landmarks are
used as input to the network that learns the visual features.
On the other hand, [5] makes use of face embeddings [3]
extracted on the input video frames containing the whole
face. These face embeddings are invariant to illumination,
pose, and facial expression. The authors show that, apart
from the region around the mouth, the facial parts like eyes
and cheeks also contribute to the speech separation perfor-
mance. A very recent work [7] leverages not only the lip
motion features but also the facial appearance of the speaker
since it is related to certain speech attributes. Their net-
work is trained in a multi-task fashion that jointly learns
audio-visual speech separation and cross-modal face-voice
embeddings that assist in establishing face-voice mappings.
In [2], a single face image of the target speaker is used to
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condition their audio-visual source separation model on fa-
cial appearance.

In a concurrent work, Li [10] explored the specific task
of audio-visual singing voice separation. Li’s audio-visual
singing voice separation method particularly outperformed
the audio-only baseline methods when the input sample
contained backing vocals in addition to the target voice. Our
work is also along the similar lines but we focus on the ef-
fect of volume of the target voice in the source separation
quality. Further, our approach also differs from Li’s work in
terms of the choice of baseline models, the proposed model
architecture, the experimental setup and the dataset.

While there are different audio-visual benchmark
datasets for speech separation (reviewed in [14]), to the best
of our knowledge, to date there is no public dataset available
for audio-visual singing voice. One of the contributions of
the paper is a new dataset with videos of solo performances
of people singing a cappella, i.e. with no musical accom-
paniment. This dataset can be used to train audio-visual
networks for singing voice separation.

The U-Net architecture has been extensively used both
in audio-only source separation methods [9, 13, 18] as well
as in its audio-visual counterpart [6, 22, 23]. In this paper,
we propose a new audio-visual network based on U-Net.
It is conditioned by the motion features extracted using a
visual network that operates on a sequence of aligned faces
cropped around the lips region.

In summary, our contributions are two-fold: i) a new
dataset of singers performing with no accompaniment, and
ii) a new audio-visual deep neural network for singing voice
separation. Both are, to the extent of our knowledge, the
first ones presented in the literature with publicly avail-
able code and data for reproducibility. The code, the pre-
trained models and the dataset are publicly available at
https://ipcv.github.io/Acappella/

2. The Dataset
In order to exploit the visual information in the singing

voice separation problem, we gathered a new dataset of peo-
ple singing a cappella. The dataset, named Acappella, com-
prises of around 46 hours of a cappella solo singing videos
sourced from YouTube, sampled across different singers
and languages. It encompasses four language categories:
English, Spanish, Hindi and others.

The samples in our dataset are defined based on the
timestamps corresponding to the segments of interest in
each of the videos. The segments have been manually se-
lected to exclude parts of the videos that do not satisfy any
of the following characteristics: single frontal face view
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without occlusions, minimal background noise, no beat-
boxing, no snapping fingers, songs with lyrics. The times-
tamps defining these segments are published as a part of the
dataset.

The dataset also comes with the pre-defined splits for
training, validation and testing. The training set makes up
around 80% of the total dataset. Around 7% of the dataset
forms the validation set which is used during the training
to save the best checkpoint. The test set is divided into the
following subsets: seen and unseen. The former consists of
samples from known singers, i.e. singers seen in the training
set but singing different songs. The latter contains singers
who are not a part of the training set. The unseen test subset
also contains samples from languages not seen in the train-
ing set. Extended statistics are shown in Figure 1.

Figure 1. Acappella dataset statistics.

We also wanted to test our models to separate voices in
multi-voice a cappella videos where multiple singing faces
are put together in a single view. Since such videos sourced
from YouTube do not provide us with the individual voices
for each face, it is not possible to quantitatively evaluate our
models on them. Hence, we assembled a multi-voice video
ourselves. It contains six voices sung by a female singer.

Li [10] created two datasets of audio-visual solo singing
voices. One comprises 491 videos curated from YouTube
and the other 65 recorded videos. Together, they sum up
to 12 hours of solo singing videos. On the other hand, our
dataset, Acappella, spans around 46 hours and to our knowl-
edge, it is the biggest dataset of audio-visual solo singing
voice and, at present, the only one which is public.

3. Singing voice separation model
The model is a multimodal CNN which takes in the video

frames and the complex spectrogram of the audio mixture
as the input and returns a complex mask for the target voice.
The video consists of a sequence of RGB frames of the tar-
get singer cropped either around the mouth or the face (in
case we use visual embeddings). The estimated mask al-
lows to recover the separated voice of the target singer by
computing the complex product between the mask and the
spectrogram.

Our network is designed for a single singer mainly for
two reasons: i) it allows to reduce and bound the memory
required for training, and ii) it broadens the applicability of
the model since the video just needs to visualise the face of
the singer with no extra visual information of the additional
sound sources. This way, the model can address mixtures
of singing voice with accompaniments of different nature:
musical instruments, backing vocals, beatboxing, snapping
fingers, ambient sounds or different types of noise.

The architecture is a two-stream convolutional neural
network for processing video and audio, denoted as Y-Net.
The audio network consists of a 4-block U-Net which pre-
dicts a two-channel tensor corresponding to the real and
imaginary parts of the complex mask. For the video net-
work, we experiment with two options:

1) Y-Net-m: We use a 3-block 3D-ResNet-like network
where the first block is a 3D convolutional block and the last
blocks are 2D convolutional ones. The 3D convolutional
block processes motion information. This design turns into
a network with 3M parameters (M for million). In contrast,
a traditional 3D-ResNet18 has 33.4M and the 2D-ResNet18
has 11.4M. This way, the visual network keeps the capacity
to model spatio-temporal information, as suggested in Tran
et al. [20], while having a contained amount of parameters
not to overfit. This network is fed directly with the video
frames cropped around the lips region.

2) Y-Net-e: In this case, we consider the visual net-
work used in Ephrat et al. [5]. The input to this visual
network are the face embeddings extracted from the video
frames cropped around the aligned face, rather than the
video frames themselves, as in [5]. The visual network
comprises of six 1D dilated convolutional blocks which add
up to around 2.56M trainable parameters.

The visual features and the audio network’s latent feature
are aligned temporally and fused together through FiLM
conditioning [4].

3.1. Pre-processing

Video processing. We process the video stream using a
face detector1 to crop and align the face along all the frames
in the video. The resulting sequence is resized to 160× 160
and visual embeddings are computed for each of the frames
as in [5]. We store the frames after resizing them to 96 ×
96. We feed the visual network with 100 RGB frames (4s,
25fps) containing the face of the target singer.

Audio processing. The audio signal is resampled to
16384 Hz. We consider a 4s-audio excerpt and compute
its STFT using a Hanning window of size 1022 and a hop
length of 256 obtaining a 512×256 spectrogram. For com-
putational efficiency, we downsample the spectrogram in
the frequency dimension to 256×256. Finally, we feed the
network with the complex spectrogram.

1https://github.com/DinoMan/face-processor



3.2. Training strategy, training target and loss

We train the networks in a self-supervised way generat-
ing mixtures artificially. Given a set of N waveforms, we
generate an artificial mixture by taking their average. The
network is trained to optimise an L2 loss on bounded com-
plex ratio masks [21].

Let M be the ideal complex ratio mask for the target
source. Since the mask M is not bounded, we apply a hy-
perbolic tangent on the real and imaginary parts of M , at
every time-frequency coordinate, to obtain a bounded com-
plex mask. The loss function to optimise is anL2 loss with a
gradient penalty, that weights the mask error in every time-
frequency coordinate proportionally to the magnitude of the
spectrogram of the mixed audio.

4. Experiments

We conduct a set of experiments comparing the Y-Net
against its audio-only counterpart, the U-Net (i.e. our Y-Net
without the visual network), and a state-of-the-art model for
speech separation, the model of Ephrat et al. [5], that we
denote as LLCP. Y-Net-r is the same network as Y-Net-m
but it has been trained with mixtures in which 50% of the
time the mixture includes two lead voices rather than one.

When the sound sources have clearly distinct texture, us-
ing the audio modality alone could result in a good level
of source separation. But, such a model might not work
well when it comes to separating a target voice from a mix-
ture containing multiple voices, which is the case of multi-
voice a cappella. To separate a target voice in such multi-
voice a cappella, the lip motion information tracked in the
visual modality could be useful. To make the model to
pay attention to the lip motion during training, we also in-
clude human voices as accompaniments to the samples from
Acappella. The accompaniment samples are sourced from
MUSDB18 [17] and the following categories of AudioSet
[8]: acappella, background music, beatboxing, choir, drum,
lullaby, rapping, theremin, whistling and yodelling.

We evaluate the models in two different scenarios: mix-
ing a single singing voice with accompaniment (SV+A) and
mixing two singing voices with accompaniment (2SV+A).
Besides, we use different volume levels in the target singing
voice, so that experiments range from predominant singing
voice to non-dominant one. To do so, each source si in
the mixture is normalised by its RMS value and then the
singing voice is further multiplied by a factor α, where
α ∈ {0.25, 0.5, 1, 1.25}. Results for these experiments in
terms of Signal-to-Distortion Ratio (SDR) and Signal-to-
Interference Ratio (SIR) are shown in Fig. 2.

For the SV+A setup, we can observe that U-Net, an
audio-only model, performs really well for higher volume
levels of the target voice. We hypothesise that the system is
capable of learning what the predominant voice is and sep-

Figure 2. SDR and SIR values on the test seen set.

arating that from the accompaniment even if it consists of
backing vocals. To the contrary, when the volume of the tar-
get voice is low, visual information helps to better recover
the target voice. The audio-only method performs poorly
in comparison with the audio-visual methods as the volume
level of the target voice decreases.

Some interesting results arise from the 2SV+A setup as
well. When the target voice is not the predominant voice,
the U-Net fails to recover the target voice. On the other
hand, note that the Y-Net-m incorporates motion informa-
tion from the lips and outperforms LLCP in such a challeng-
ing situation despite having three times less parameters. We
hypothesise that visual embeddings of LLCP do not suffi-
ciently encode motion information. This follows the obser-
vations of [3], which explains that visual embeddings ignore
factors of variation related to the instant such as lighting,
pose and expression (which are related to the lips position).
Nevertheless, Y-Net-e that makes use of visual embeddings,
outperforms the U-Net. Furthermore, note that the Y-Net-r
model performs better than the Y-net-m in 2SV+A setup.

Model English Unseen languages Multi-voice
SDR SIR SDR SIR SDR SIR

U-Net -2.10 11.66 -1.98 10.64 2.79 6.67
LLCP -1.19 14.22 -1.20 12.49 5.63 9.55
Y-Net-e -1.69 12.21 -1.46 11.33 2.46 7.32
Y-Net-m 2.39 13.76 1.81 12.25 6.95 10.36
Y-Net-r 3.16 13.71 2.13 12.55 6.11 10.81

Table 1. SDR and SIR values on the test unseen sets (left and cen-
ter) and our multi-voice video (right). The test unseen sets are
evaluated in the 2SV+A setup.

Finally, we evaluate on the unseen singers, unseen lan-
guages and our multi-voice video to check how well the
models generalise. Results are in Table 1. The first four
models have been trained with mixtures in which 50% of
the time the mixture includes two lead voices rather than



one. Among them, Y-Net-m performs the best in terms
of SDR. The test unseen sets in Table 1 contain both male
and female singers. Evaluating on gender specific test sub-
sets showed that the performance is better for female target
voice. It could be because the dataset is unbalanced and
contains more female samples (see Fig. 1). We notice that
the U-Net is biased as it tends to predict female voices over
the male ones while audio-visual models can better pre-
dict male voices, thanks to the visual information. Table
1 also provides the quantitative results of different models
in the separation of the lead vocals in our multi-voice video.
Again, this singer is not a part of the training set.

5. Conclusions

This paper explores the singing voice separation problem
from a new perspective, by exploiting both the audio and
visual information. For that, we introduce a new dataset of
videos of a cappella solo performances. We also propose a
new audio-visual singing voice separation model, based on
a U-Net conditioned on the lip motion of the target singer.
Our experiments show that the audio-visual methods im-
prove upon the audio-only method in challenging scenar-
ios. The presented method is compared to a state-of-the-art
audio-visual speech separation method trained on the new
dataset. Our method better exploits the lip motion infor-
mation and thus largely outperforms our baseline models in
terms of SDR in separating a target voice mixed with an-
other singing voice and an accompaniment.
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