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Abstract

The major challenge in audio-visual event localization
task lies in how to fuse information from multiple modali-
ties effectively. Recent works have shown that the attention
mechanism is beneficial to the fusion process. In this paper,
we propose a novel joint attention mechanism with multi-
modal fusion methods for audio-visual event localization.
Particularly, we present a concise yet valid architecture that
effectively learns representations from multiple modalities
in a joint manner. Initially, visual features are combined
with auditory features and then turned into joint represen-
tations. Next, we make use of the joint representations to
attend to visual features and auditory features, respectively.
With the help of this joint co-attention, new visual and audi-
tory features are produced, and thus both features can enjoy
mutually improved benefits from each other. It is worth not-
ing that the joint co-attention unit is recursive meaning that
it can be performed multiple times for obtaining better joint
representations progressively. Extensive experiments on the
public AVE dataset have shown that the proposed method
achieves significantly better results than the state-of-the-art
methods.

1. Introduction

In this paper, we focus on the audio-visual event localiza-
tion task. As shown in Fig. 1, an Audio-Visual Event (AVE)
is defined in a video sequence that is both audible and visi-
ble. The audio-visual event localization task consists of two
sub-tasks, one of which is to predict the event label while
the other is to predict which segment of the video sequence
has an audio-visual event of interest. As in the AVE defi-
nition, localizing an AVE must deal with heterogeneous in-
formation from both audio and visual modalities. Moreover,
recent works [9, 16, 17] show that the performance after fu-
sion outperforms the one that only uses a single modality.
Although these approaches present interesting explorations,
how to smartly fuse representations from both modalities is
still a challenging task.

Multimodal fusion provides a global view of multiple
representations for a specific phenomenon. To tackle the

video sequence

Figure 1. Audio-Visual Event (AVE) is an event both audible and
visible. e.g., a person can see a helicopter in the visual sequence
(the bottom row) and also hear the helicopter’s engine sound in the
audio sequence (the top row).

AVE localization problem, existing methods [9, 16] either
fuse cell states out of LSTMs [16], or fuse both hidden
states and cell states from LSTMs [9]. Both aforemen-
tioned approaches exploit a plain multimodal fusion strat-
egy, where the fusion results might be unstable as it is hard
to guarantee good quality of the information used for the
fusion, e.g., some noisy information from the background
segments may also be included. Therefore, a more robust
fusion strategy is needed for better representations. Wu
et al. [17] introduce a cross-modal matching mechanism
that exploits global temporal co-occurrences between two
modalities and excludes the noisy background segments
from the sequence. Intuitively, having global features to
interact with local features would help to localize the event,
but it needs additional supervision to manually filter the
background segments.

Motivated by the popular attention techniques [2, 5, 11,
14, 15, 18, 19], we propose a new Joint Co-Attention (JCA)
mechanism which develops on the basis of self-attention
and co-attention. We utilize the joint representation to gen-
erate the attention masks for two uni-modalities while previ-
ous methods [10,12] independently generate attention mask
for each other. In our approach, instead of using features
from one single modality, each attention mask is generated
using features from both modalities and thus it is more in-
formative. As a result, each modality is attended not only
by the features from itself (self-attended), but also by the
features from the other modality (co-attended). Extensive
experiments show the superiority of our proposed joint co-
attention learning framework.



Figure 2. The overall structure of the proposed framework. We
split it into three parts, i.e., sequence feature re-representation
layer, joint co-attention network and category prediction layer. For
the symbols, +⃝ denotes concatenation, F⃝ denotes early fusion of
audio feature and visual feature, σ⃝ denotes the softmax function,

T⃝ is transpose operator, and ×⃝ is matrix multiplication operator.

2. Joint Co-Attention Network

An Audio-Visual Event (AVE) is defined as an event that
is both visible and audible [16]. As in [16, 17], for a given
audio-visual video sequence S=(Sa, Sv), while Sa denotes
the audio portion and Sv denotes the visual portion. The
video sequence S is split into N non-overlapping yet con-
tinuous segments where each segment is typically one sec-
ond long. For each segment, a label y ∈ {0, 1} is given,
while 0 indicates the segment is background and 1 indi-
cates that is an AVE. The sequence features, i.e., Sa and
Sv are extracted using a pre-trained CNN. We denote the
extracted segment-level feature as sta and stv correspond-
ing to the audio and visual modality respectively, where
t ∈ {1, 2, · · · , N}. Our network is built on the basis of
fixed sta and stv , and the architecture is shown in Fig. 2.

The proposed joint co-attention layer attends to visual
features and audio features simultaneously. It takes the au-
dio representation A and the visual representation V as in-
puts and concatenates two representations as the joint rep-
resentation J. We employ J to co-attend to A and V, re-
spectively. It is worth noting that we only preserve J→A
(i.e., joint feature attend to audio feature) and J→V (i.e.,
joint feature attend to visual feature), the inverse directions
of A→ J and V→ J are abandoned for simplicity, which
is different from the original co-attention mechanism [10].
One property of JCA is mutual attention, that is, it can at-
tend to features from two different modalities simultane-
ously. Another special property of JCA is stackability, i.e.,
we can stack several JCAs so that we can recursively per-
form the process multiple times.
Primary Idea for Joint Co-Attention. Recent studies [10,
12] explore the co-attention theory in Visual Question An-
swering (VQA). The text sequence representations and the
visual sequence representations attend mutually to obtain
new representations. Inspired by this, we explore a mode

that allows representation from one modality not only at-
tending to the other representation from the other modal-
ity but also attending to the representation from its orig-
inal modality. Given audio representation A ∈ RN×da ,
and visual representation V ∈ RN×dv , the joint represen-
tation J ∈ RN×d is acquired by the concatenation of A
and V, i.e, J = [A;V] where d = da + dv . We take au-
dio feature Aℓ as an example to elaborate the process of
joint co-attention. Here, we denote A1 as the initial state
of audio feature and Aℓ as the audio feature after ℓ-th joint
co-attention layer. First, the (ℓ−1)-th layer’s audio repre-
sentation Aℓ−1 is concatenated with Vℓ−1 to obtain joint
representation Jℓ−1; next, we employ the Jℓ−1 to attend to
Aℓ−1 and finally obtain the ℓ-th layer’s audio feature Aℓ.
Similarly, the new visual feature Vℓ is obtained.
Learning to Joint Co-Attend. Fusion is one of the
key challenges for multimodal learning [1]. Follow-
ing recent studies [10, 12] in VQA, we specifically de-
rive the fusion to fit our audio-visual event localization
task. After calculating the joint representation matrix
J, we use it to attend to different uni-modal representa-
tions as Ca = Tanh

(
ATWjaJ√

d

)
, where Ca is the joint-

audio affinity matrix, T denotes transpose operation, and
Wja ∈ RN×N is a learnable weight matrix (Wja is im-
plemented as fully-connected layer). Following the same
rule, the joint-visual affinity matrix Cv can be written
as Cv = Tanh

(
VTWjvJ√

d

)
, where Wjv ∈ RN×N is

also a learnable weight matrix. After calculating the joint
uni-modal affinity matrices Ca and Cv , we then calcu-
late the attention probabilities map Ha,Hv of two modal-
ities as, Ha = ReLU

(
WaA+WcaC

T
a

)
and Hv =

ReLU
(
WvV +WcvC

T
v

)
, where Ha ∈ Rk×da ,Hv ∈

Rk×dv represent the attention probabilities map of audio
modality and visual modality, respectively. Wa,Wv ∈
Rk×N , Wca,Wcv ∈ Rk×d are learnable weight matrices.

After obtaining the attention map Ha and Hv , we re-
compute the new audio representation and new visual rep-
resentation by

Aℓ = g(Aℓ−1,WT
hℓ
a
Hℓ

a),V
ℓ = g(Vℓ−1,WT

hℓ
v
Hℓ

v), (1)

where Whℓ
a
,Whℓ

v
∈ Rk×N are learnable weight matrices

in the ℓ-th layer. ℓ−1 represents the features produced by
the ℓ−1-th layer. In our case, g is a summation function.
Fusion by Fusion. Multimodal fusion can generate more
robust representation using the features from multiple
modalities that are collected for the same phenomenon. Ear-
lier studies [9, 16, 17] particularly exploit the method in an
audio-visual dual-modality setting either directly fusing the
features or using cross dot product operation. Different
from them, we consider multimodal fusion as a recursive
process, where we fuse audio representation A and visual
representation V recursively to obtain more robust repre-



sentations. Following Eq. (1), we generalize this recursive
process as

Aℓ = g(· · · g(A0,WT
h1
a
H1

a) · · · ,WT
hℓ
a
Hℓ

a), (2)

Vℓ = g(· · · g(V0,WT
h1
v
H1

v) · · · ,WT
hℓ
v
Hℓ

v), (3)

where ℓ represents the amount of times that the joint co-
attention is repeated. After fusing ℓ times, we will obtain
two more robust representations for audio and visual modal-
ity, respectively. The final fused audio and visual represen-
tations will be fed into the MLP prediction layer to predict
the AVE category.

3. Experiments
Audio-Visual Event Dataset. The Audio-Visual Event
(AVE) dataset by [16] is a subset of AudioSet [6]. It consists
of 4, 143 video clips that involve 28 event categories. We
adopt the split technology of [16] where train/validation/test
sets are 3, 309/402/402 video clips, respectively. While
training, the model has no access to the test portion to bet-
ter evaluate the model’s generalization ability. For the AVE
dataset, it contains comprehensive audio-visual event types,
in general, instrument performances, human daily activi-
ties, vehicle activities, and animal actions. To be more spe-
cific, for more detailed event categories, take instrument
performances as an example, AVE dataset contains accor-
dion playing, guitar playing, and ukulele playing, etc. A
typical video clip is 10 seconds long and is labeled with
the start point and endpoint at the segment level to clarify
whether the segment is an audio-visual event.
Evaluation Metrics. We follow [9, 16, 17] and adopt the
global classification accuracy obtained from the last pre-
diction layer as the evaluation metric. For an input video
sequence, our goal is to predict the category label for each
segment. It is worth noting that the background category
contains 28 backgrounds since each event category can have
its own background so that it is hard to predict.
Experimental Details. Following [16, 17], we adopt pre-
trained CNN models to extract features for each audio and
visual segment. Specifically, we exploit the VGG19 [13]
network pre-trained on ImageNet [4] as the backbone to ex-
tract segment-level visual features. Meanwhile, for the au-
dio segment, we extract the segment feature using a Vggish
network [7] which is pre-trained on AudioSet [6]. For a fair
comparison, we use the same extracted features (i.e, audio
and visual features) as used in [16,17]. In the training stage,
the only supervision we exploit is the annotation labels for
the temporal segments.
State-of-the-Art Comparison. Results compared with the
leading methods are reported in Table 1. We take a sim-
ilar model architecture as in [16] and run single modal-
ity models as our baselines, which only take audio fea-
tures or visual features during the experiments. First, to

Table 1. Results of comparisons with the state-of-the-art methods
on the AVE dataset. For a fair comparison, * is obtained by ex-
ploiting the same pre-trained audio and visual features. While the
task is hard, it can still be observed that our model outperforms the
existing methods.

Method Accuracy (%)
Audio Only (Vggish [7]) 59.5
Visual Only (Vgg19 [13]) 55.3
ED-TCN [8] 46.9
Audio-Visual [16] 71.4
AVSDN* [9] 72.6
Full-Audio-Visual [16] 72.7
DAM [17] 74.5
Ours 76.2

validate the proposed method can enable efficient interac-
tions between audio features and visual features, we com-
pare with a state-of-the-art temporal labeling network, i.e,
ED-TCN [8], which can integrate information from mul-
tiple temporal segments. Next, to verify the effectiveness
of our fusion strategy of audio feature and visual feature,
we compare with two methods, i.e, Audio-Visual [16] and
AVSDN [9]. Both methods utilize a straightforward fu-
sion strategy, where fuses the audio and visual features out
of LSTMs by concatenation. Lastly, to evaluate that our
method is tolerant with less supervision, we compare our
method with DAM [17], which needs additional supervi-
sion to exclude event-irrelevant segments during training.
Comparison Analysis. Due to the absence of interactions
between audio modality and visual modality, our proposed
model can easily surpass the performance of the baselines.
In addition, by comparing with ED-TCN, our model enables
more effective interactions between two modalities. Thus, it
can be testified that interactions or fusion can boost the task
performance and our model is more superior on enabling
interactions between two different modalities. Unsurpris-
ingly, by fusing the two different features using our joint co-
attention mechanism, our model outperforms Audio-Visual
and AVSDN using a plain fusion strategy. Moreover, even
without additional effort to exclude event-irrelevant seg-
ments, our model can learn useful representations from
noisy inputs and contribute to better performance.
Framework Decoupling Analysis. Results are showed in
Table 2. First, the overall performance of the proposed
framework outperforms the state-of-the-art method [17]
which needs additional supervision. Among all the ob-
served declines, Bi-LSTM has the highest impact. That
confirms the effectiveness of the Bi-LSTM part. For alter-
natives to early fusion, neither the global average pooling
nor the global max pooling surpasses our full model.

Among the experiment results with two different
co-attention mechanisms, i.e., original co-attention
method [12] and our joint co-attention method, our joint
co-attention method excels the original co-attention method



Table 2. Ablation studies on the proposed framework. Uni-modal
Bi-LSTM is the LSTM in sequence feature re-representation layer
while Joint Bi-LSTM is the one in the prediction layer. * denotes
we remove the residual embedding of LSTMs while † denotes that
we adopt the primary co-attention mechanism into the proposed
framework.

Model Accuracy (%)
Ours w/o Uni-modal Bi-LSTM 74.5
Ours w/o Joint Bi-LSTM 74.9
Ours w/o Residual Embedding* 75.2
Ours w/ GRU [3] 75.3
Ours w/ Average Pooling 75.1
Ours w/ Max Pooling 75.0
Ours w/ Co-Attention† [12] 75.4
Ours w/ Joint Co-Attention 76.2

Figure 3. Two qualitative results on audio-visual localization task.
The first example is helicopter hovering, i.e, ‘heli.’ is the abbrevia-
tion for helicopter for better layout; while second example is play-
ing guitar, i.e., ‘guitar’ for short, ‘bg’ denotes ‘background’. The
green arrow represents the correct prediction whereas the red ar-
row denotes the wrong prediction. To visualize where they attend
to, we generate images with their corresponding attention map.
Best viewed in color.

which follows a dual-modality mutual attending way
(visual features attend to audio features and audio features
attend to visual features). By not only attending to the
corresponding modality but also the modality of itself, our
proposed joint co-attention method performs better in the
audio-visual fusion task. To sum up, the ablation studies
demonstrate the efficiency of our proposed framework.

3.1. Qualitative Evaluation

In this section, we show some qualitative results of our
proposed framework in Fig. 3. For each row in Fig. 3, the
left is the category of this audio-visual event; the top con-
tent is the waveform of input audio sequence; the middles
are raw frames and frames with attention map of the input
video sequence; the bottom is the audio-visual event predic-
tion. Among the two instances in Fig. 3, the second instance
is much harder as the scene is more complicated where dif-

ferent people are playing different instruments. In the be-
ginning, the proposed network predicts well. However, as
the singer changing his posture, the guitar can hardly be
seen even with our eyes. Therefore, the network fails to
predict it as playing guitar. Surprisingly, as the singer turns
back to the front, our network works again, and it marks two
guitars in the picture even the other guitar is indistinct.

4. Conclusion
In this paper, we investigate an interesting problem on

deep audio-visual learning for the AVE task. To better cope
with this multimodal learning task, we propose a novel joint
co-attention mechanism with double fusion. To the best of
our knowledge, this is the first time of applying the co-
attention mechanism into the audio-visual event localiza-
tion task. The integration with double fusion leading to
better representations for the AVE task by co-attending to
both audio and visual modalities. Moreover, experimental
results on the AVE dataset have confirmed the superiority
of the proposed framework.
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