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Abstract

Automatic audio-visual urban traffic understanding is a
growing area of research with many potential applications
of value to industry, academia, and the public sector. Yet,
the lack of well-curated resources for training and evalu-
ating models to research in this area hinders their devel-
opment. To address this we present a curated audio-visual
dataset, Urban Sound & Sight (Urbansas), developed for
investigating the detection and localization of sounding ve-
hicles in the wild. Urbansas consists of 12 hours of unla-
beled data along with 3 hours of manually annotated data,
including bounding boxes with classes and unique id of ve-
hicles, and strong audio labels featuring vehicle types and
indicating off-screen sounds. We discuss the challenges pre-
sented by the dataset and how to use its annotations for the
localization of vehicles in the wild through audio models.

1. Introduction
The automatic understanding of audio-visual urban

scenes is a growing area of research, with many potential
applications of value to industry, academia, and the pub-
lic sector, with potential applications such as assistive de-
vices for the hearing-impaired, the quantification of traf-
fic for policy making, autonomous driving, among others.
Audio-visual information is fundamental for the full under-
standing of real-world scenes, as visual and acoustic modals
provide complementary information: images help identify
sources and understand their motion, audio help understand
the proximity of sources, the presence of relevant off-screen
sounding objects, and help solve occlusions and improve es-
timations with poor lighting. Understanding an audio-visual
urban scene includes estimating the class, spatial location,
direction and speed of movement of beings and objects in
real environments by the sounds they make and the way they
look. Ideally, automatic solutions would be robust across a
wide range of sound scenes and sensing conditions: noisy,
sparse, with varying compositions of sources, with moving
sources, with moving sensors.

While there is a large body of research in related com-
puter vision (e.g. object detection and pedestrian counting
[13, 17]), and machine listening areas (e.g. urban sound
event detection and classification, [15, 11]), there is lit-
tle work on audio-visual classification and localization of
sounding sources in realistic urban settings. Recently the

machine listening community has turned its attention to lo-
calization, seeking to apply the same deep learning tech-
niques that have proven successful in classification before
[12, 1, 8], mostly using synthetic datasets. Research on the
co-occurrence of audio and video has recently received in-
creasing attention due to the development of self-supervised
models that exploit audiovisual cues for their pretext-task
[2, 18, 3]. Most of this research is carried out using un-
labeled videos from Youtube or Audioset [9], and models
learn a representation of the data (either audio, visual or
both) to later be applied to a downstream task [5]. Except
for a few exceptions [7], these works have focused on audio-
visual localisation mostly of sources such as musical instru-
ments or in low-complexity settings, where objects are rel-
atively close to the camera and central to the scene.

One of the main challenges to audio-visual urban re-
search is the lack of labeled data. While most of the existing
resources involve either audio [10] or video [4] alone, the
available audio-visual datasets of urban scenes have limited
annotations, restricted to audio events only [20] or clip la-
bels intended for scene classification [19]. Moreover, since
manually annotating real-world data is very arduous and
time consuming, the amount of labeled data tends to be
small for machine learning standards. A way to alleviate
the work of manual annotation is to create synthetic audio
mixtures using isolated sound events [16] or synthetic visual
scenes from video games [14], but they fail to capture the di-
versity and complexity of naturally occurring sound scenes.
Another challenge is how to annotate moving sources in
such complex settings: dealing with off-screen sounds, oc-
clusions, or objects that can be seen but not heard.

2. The Urban Sound & Sight dataset
We set four main goals for creating this dataset: 1) to

compile a set of real-field audio-visual recordings; 2) the
recordings should be stereo to allow exploring sound local-
ization in the wild; 3) the compilation should be varied in
terms of scenes and recording conditions to be meaning-
ful for training and evaluation of machine learning models;
4) the labeled collection should be accompanied by a big-
ger unlabeled collection with similar characteristics to allow
exploring self-supervised learning in urban contexts in the
future. In the following we explain how we have compiled
Urbansas to fulfill these goals.
Data Sources. We have compiled and manually anno-
tated Urbansas from two publicly available datasets, plus
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the addition of unreleased material. The public datasets
are the TAU Urban Audio-Visual Scenes 2021 Develop-
ment dataset [19] and the Montevideo Audio-Visual Dataset
(MAVD) [20]. The TAU dataset consists of 10-second seg-
ments of audio and video from different scenes across Eu-
ropean cities, traffic being one of the scenes. Only the sub-
set of scenes labeled as traffic were included in Urbansas.
MAVD is an audio-visual traffic dataset curated in different
locations of Montevideo, Uruguay, with annotations of ve-
hicles and vehicle components sounds (e.g. engine, brakes)
for sound event detection. Besides the published datasets,
we include a total of 9.5 hours of unpublished material
recorded in Montevideo, with the same recording devices
of MAVD but including new locations and scenes.

subset places clips mins frames labeled
mins

Montevideo 8 3978 663 955k 90

TAU 42 1387 231 333k 90
Table 1. Breakdown of Urbansas per city and location. Last col-
umn indicates the portion data in the labeled set.

3. Annotating audio-visual urban scenes
In order to understand an audio-visual urban scene, we

want to estimate the class and location of each source as
it moves over time. To that goal, we have annotated: 1)
bounding boxes of objects with a class assignment and
object id; 2) “strong” audio labels, with beginning and
end timestamps and the correspondent class of the acous-
tic event; 3) relevant metadata about lighting and weather
conditions (e.g. night vs. day). This dataset focuses on traf-
fic since vehicles are a compelling case-study of sounding
moving objects in urban settings. Consequently, our ontol-
ogy focuses on the four most predominant vehicle types:
car, truck, bus, and motorbike. In the following, we discuss
the decisions we have made to annotate Urbansas. We used
CVAT 1 for the bounding box annotations, and VIA [6] for
annotating the audio with the video as reference. The video
annotations were performed at 2fps to reduce redundant an-
notations, improve annotation quality, and allow for a larger
volume of annotated clips.
Notation. For a specific file in the dataset, let us define an
audio annotation as a tuple (ts,i, te,i, li), i ∈ [1, NA], where
ts,i and te,i are the start and end time of an audio event with
label li, and NA is the total number of audio annotations
for the file. We also define a video annotation as a tuple
(tj , lj , trj , vj , xj , wj , yj , hj), i ∈ [1, NV ], where tj is the
timestamp of an object with label lj and visibility flag vj ;
track id trj is used to identify a single object across frames

1https://github.com/openvinotoolkit/cvat

in a file; the bounding box for the object is defined in terms
of horizontal (xj) and vertical (yj) shift between the top-left
corner of the frame and bounding box, with corresponding
height (hj) and width (wj); NV is the total number of video
annotations for the file.
Video annotations of sounding vehicles. Vehicles in the
video are annotated if they are believed to contribute to the
acoustic scene. Primarily, this includes vehicles that either
drive past or idle near the observer, while excluding vehicles
with their engines off (i.e. parked). In complex scenes, there
are often multiple roads at different distances. In these sce-
narios, acoustic masking is taken into account - e.g., if ve-
hicles from closer road mask sounds from the further road,
then only the closer vehicles are annotated. If the closer
road is less busy, then the further road may be annotated as
well. If a vehicle is temporarily occluded (hidden behind
something, partially or fully) it is still annotated with an es-
timate of its true location, with an additional flag (vj = 0)
identifying it as occluded.
Integrating audio and video annotations. The audio an-
notations can be used in combination with the video anno-
tations to identify vehicles that are both audible and visible.
In some cases, an object could have no audio events (and
vice versa) if the sound occurs before or after the vehicle
enters/leaves the scene (this can happen for certain camera
angles). In other cases, an audio event may have no corre-
sponding object in the video, which may happen when a ve-
hicle passes outside of the camera’s view; these are labeled
as off-screen sounds. Since we have the audio annotations
to disambiguate when the object is both present in the image
and producing sound at the same time, we annotate vehicles
when they are “close enough” to understand error types in
visual-only or audio-visual models.
Scene annotations. Some scenes have many vehicles pass-
ing at the same time and it is perceptually very hard to at-
tribute sounds to a particular vehicle, they rather produce a
“constant background sound” altogether. To address this,
we include a binary flag at the clip level indicating the
presence of non identifiable vehicle sound. In cases where
particular vehicles are identifiable on top of this constant
sound, we annotate them with strong labels as well as in-
dicate the presence of non identifiable vehicle sounds. Ad-
ditionally, we include flags indicative of the lighting: night
vs. day.

4. Localizing sources in the wild
Indexing of video annotations for audio localization. We
approximate the vehicles position using linearly spaced re-
gions corresponding to the angles within the camera’s field
of view (FoV). For each video annotation, we approximate
the position (θj) of the object based on the coordinates of
the bounding box, and then we quantize θj to the closest
region. We explore two ways of computing θj :



1) We consider the vehicles as point sources. For this we
used the center point of the bounding box as the position
indicator. Formally:

θj(xj) =

(
xj +

wj

2

W
− 1

2

)
fov, (1)

where W is the width of the frame and fov is the FoV of
the camera. Working with θj approximated this way allow
us to combine data with different FoVs and resolutions (W)
in the future. 2) We relax the point-wise estimation and
instead approximate the vehicle location to be the left (θj,L)
and right (θj,R) bounds of the bounding box.

θj,L = θj

(
xj −

wj

2

)
, and θj,R = θj

(
xj +

wj

2

)
. (2)

Finally, we map θj to a specific region rj as rj =
argmini|θj−ri| for i ∈ {1, .., RN}, where ri denotes the re-
gion i and RN is the total number of regions the FoV (120◦

from camera specification) is divided, which we set to 5.

Figure 1. Left: Regions activated using the full bounding box,
Right: regions activated using the bounding box center. Each re-
gion conveys 24◦. Note: black vehicle is parked so it is not anno-
tated.

Audio annotations as filter to video objects. At training
time, we only consider video events that are confirmed by
audio annotations. This condition is met if the timestamps
for a given video object overlap with the start and end time
of an audio annotation with the same label. Note that this
is not always the case since there are scenes where vehi-
cles are visible but not audible and the other way around.
Formally, given a video object Vk characterized by label lk

and a set of timestamps
{
tkp p ∈ [1, NVk

]
}

, we consider the
video object as valid for training if it exists at least one au-
dio annotation (ts,i, te,i, li), i ∈ [1, NA] such that li = lk

and
∑NVk

p=1

[
(tkp ≥ ts,i) ∧ (tkp ≤ te,i)

]
>= 0, i.e. audio and

video overlap and their labels coincide.

5. Data challenges and baseline
To learn about the challenges of the data and usefulness

of the metric, we ran a set of experiments with simple base-
lines. We are not searching for an optimal model that maxi-
mizes accuracy but rather we are interested in understanding
the characteristics of the dataset and metric themselves, and
identifying venues for future research.

Baselines. We adapt the architecture of [1] to use stereo
audio, and to be multi-class and multi-direction model, i.e.
to predict overlapping sources of the same class and with
different positions. To do so, our model predicts a tensor
T (i, c, j) = (ti, c, rk) for each time ti, i ∈ [1, Nf ] with Nf

the number of frames, vehicle class c ∈ {C1, .., C4}, and
region rj ∈ [R1, R5]. We use a sigmoid layer to allow for
multiple activations at once. We train and evaluate the box-
wise model using the regions covering the entire bounding
box, and the point-wise using the regions activated at the
center of the bounding box (see Figure 1). We also include
two random baselines: a point-wise baseline that can predict
up to two active regions at a time, and a box-wise baseline
that estimates up to five regions. Each one is compared to
the matching ground-truth (point- and box-wise). We split
the labeled set into 5 folds stratified by location and we per-
form cross-fold (4-1) training and validation. We train us-
ing 4 second chunks as in [1]. We used a weighted binary
cross-entropy loss for training.
Results. Results are depicted in Table 2. We compute the
IoU score for non-empty frames (i.e. frames containing at
least one bounding box that overlaps with the audio). The
first observation is that both models perform better than ran-
dom, the box-wise model being the best. This is to ex-
pect since the bounding box conveys more regions than the
point-wise case and thus is an easier problem. We see a con-
siderable drop in performance for the least frequent class
(truck) whose sound resembles to cars and buses.

model IoU (τ = 0.05)

bus car motorbike truck

point-wise (pw) 0.415 0.359 0.322 0.361
box-wise (bw) 0.567 0.492 0.356 0.477
pw-random 0.045 0.045 0.048 0.037
bw-random 0.102 0.100 0.089 0.115

Table 2. IoU per-class on non-empty frames.

We also compute the IoU for all frames, including in-
active frames, to assess whether the baseline can deter-
mine the presence (and absence) of vehicles in a clip. For
those empty frames, we compare the prediction mask of
the model with an empty ground truth, obtaining a score
of 1 if the model did not predict the class at any direc-
tion. We obtained better scores overall in this setting:
cars (IoU = 0.372), buses (IoU = 0.734), motorbikes
(IoU = 0.758) and trucks (IoU = 0.877) for the box-wise
model. A counter-intuitive result is that the highest scores
correspond to the least represented classes in the dataset,
potentially due to the low frequency of such vehicles in the
scenes and the fact that the baseline models have low con-
fidence values in general, favoring empty predictions and
scoring high in empty frames. This indicates that the joint



detection and localization of vehicles is a highly imbalanced
and hard learning problem. Regarding the usefulness of the
IoU metric for localization of sources in the wild, we be-
lieve that the formulation of the problem as detection and
localization makes it hard to judge with this metric how
good the models are at localizing and detecting respectively,
and we plan to explore them separately in the future.

6. Conclusions and future work
We present Urbansas, an audio-visual dataset of traffic

scenes, containing 12 hours of unlabeled data, suitable for
unsupervised and self-supervised research in visual sound
source detection and localization, and 3 hours of human-
annotated data, containing bounding boxes, classes, and
tracking information to be used for supervised research and
validation of self-supervised models as a downstream task.
To the best of our knowledge, Urbansas is the first audio-
visual urban traffic dataset with human-annotated labels
both in audio and video. We believe the dataset will open
the path to new research on audio and audio-visual sound
source localization, vehicle tracking, self-supervised audio-
visual representation for real world applications, among
others. We present first experiments on vehicle localization
and detection, including a baseline. The data and code are
open to the research community.2
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