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Figure 1. The two stages of RealForensics. In stage 1, the aim is to learn, in a self-supervised manner, frame-wise representations
that capture information on natural facial behaviour and appearance. We utilise an audiovisual, cross-modal, student-teacher framework,
whereby the student networks ingest real video and audio and try to predict the corresponding targets generated from the other modality.
The teacher networks are momentum encoders that are updated via an exponential moving average (EMA), as in [11]. In stage 2, the
detector performs face forgery classification, while predicting the video targets produced by the (now frozen) video teacher from stage 1;
only real videos contribute to the prediction loss. The video student from stage 1 is used to initialise the backbone.

1. Introduction

Automatic face manipulation methods can realistically
change someone’s appearance or expression without requir-
ing substantial human expertise or effort [8, 16, 18, 21, 27].
This technology’s potential social harm has spurred consid-
erable research efforts to detect forgery content [1, 4, 7, 10,
12–14, 17, 19, 24, 26, 31, 33, 35].

Although deep learning-based detectors can achieve high
accuracy on in-distribution data, performance often plum-
mets on videos generated using novel manipulation meth-
ods [3,6,14,19,21,30,35]. Various methods have been pro-
posed to tackle cross-manipulation generalisation, includ-
ing using data augmentation [30], truncating classifiers [3],
and targeting the blending boundary in fake videos [19].
However, many still underperform on novel forgery types
or focus on low-level cues easily corrupted by operations
like compression [14]. Targeting both generalisation and
robustness to corruptions, LipForensics [14] pre-trains on a

large-scale lipreading dataset to focus on high-level incon-
sistencies in mouth movements, but it requires costly text
transcriptions, limiting its scalability.

In this work, we are motivated by the observation that
fake videos often exhibit anomalous facial movements and
expressions, as well as subtle changes in facial form over
time. Such cues are high-level in nature and thus more re-
silient to low-level corruptions. To target such cues, we pro-
pose a two-stage approach, termed RealForensics. In the
first stage, partly inspired by BYOL [11], we propose to use
a self-supervised, student-teacher framework to exploit the
correspondence (in terms of e.g., lexical content, emotion,
identity) between the visual and auditory modalities in nat-
ural videos of talking faces. In the second stage, the forgery
detector is tasked with performing classification while si-
multaneously predicting representations learned in the first
stage, alleviating overfitting. Our experiments demonstrate
state-of-the-art performance in cross-manipulation general-
isation as well as high robustness to common corruptions.
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2. Method

Our two-stage approach is depicted in Figure 1.

Stage 1: representation learning. Given a dataset of real
videos and the corresponding audio, represented as log-
mel spectrograms, we aim to learn representations that cap-
ture information associated with facial appearance and be-
haviour. Cues like facial movements are temporally fine-
grained, and hence we learn temporally dense representa-
tions, i.e., an embedding per frame. In this work, we use the
LRW dataset [5].

Our architecture consists of a student and teacher pair for
each modality. The teachers produce targets for the students
from the other modality to predict. Specifically, backbone
networks produce embeddings passed through linear pro-
jectors to yield dense targets. The students have the same ar-
chitecture as their corresponding teachers, except that each
student additionally contains a predictor [11], whose job is
to predict the teacher targets from the other modality. The
video backbone is a CSN [29] and the audio a ResNet-
18 [15]; the temporal strides are modified to output 25 em-
beddings per second. For the predictors, we use 1-block
transformers [9] to allow modelling of temporal informa-
tion. The video-to-audio loss, Lv→a, is the cosine simili-
tary between the video predictor outputs and the outputs of
the audio teacher projectors. La→v is defined similary. The
total loss is L = Lv→a+La→v . The students are optimised
via gradient descent with a stop-gradient operation on the
teachers, and the teachers are exponential moving averages
of the students [2, 11].

Stage 2: multi-task forgery detection. Since we aim to
obtain a visual-only forgery detector, we now discard the
audio networks. We propose to use the video teacher from
stage 1 to produce targets for our detector to predict. At
the same time, the network performs forgery detection, in a
multi-task fashion. The video student from stage 1 is used
to initialise the backbone. Note that the teacher is frozen in
this stage. Our framework encourages the network to clas-
sify real and fake videos by focusing on high-level spatio-
temporal characteristics of facial appearance and behaviour.

We again use our dataset of real faces, but we now also
assume access to a dataset of fake videos. Our architec-
ture consists of a shared backbone and two heads: a super-
vised head for the forgery classification loss and an auxil-
iary one for the target prediction loss. The auxiliary loss,
La, is the cosine similarity between the predictor outputs
and the video teacher representations. The supervised loss,
Ls, is a logit-adjusted version of binary cross entropy, as
proposed in [23], to address any class imbalance. The final
loss is L = Ls + La.

Method CDF DFDC FSh DFo Avg

Xception [27] 73.7 70.9 72.0 84.5 75.3
CNN-aug [30] 75.6 72.1 65.7 74.4 72.0
Patch-based [3] 69.6 65.6 57.8 81.8 68.7
Face X-ray [19] 79.5 65.5 92.8 86.8 81.2
CNN-GRU [28] 69.8 68.9 80.8 74.1 73.4
Multi-task [25] 75.7 68.1 66.0 77.7 71.9
DSP-FWA [20] 69.5 67.3 65.5 50.2 63.1
Two-branch [22] 76.7 — — — —
LipForensics [14] 82.4 73.5 97.1 97.6 87.7
FTCN [32] 86.9 74.0 98.8 98.8 89.6

CSN 69.4 68.1 87.9 89.3 78.7
RealForensics (ours) 86.9 75.9 99.7 99.3 90.5

Table 1. Cross-dataset generalisation. AUC scores (%) on
CelebDF-v2 (CDF), DeepFake Detection Challenge (DFDC),
FaceShifter (FSh), and DeeperForensics (DFo), after training on
FaceForensics++. Best results are in bold.

Method Noise Blur Pixel Compress Avg

Xception [27] 53.8 60.2 74.2 62.1 62.6
CNN-aug [30] 54.7 76.5 91.2 72.5 73.7
Patch-based [3] 50.0 54.4 56.7 53.4 53.6
Face X-ray [19] 49.8 63.8 88.6 55.2 64.4
CNN-GRU [28] 47.9 71.5 86.5 74.5 70.1
LipForensics [14] 73.8 96.1 95.6 95.6 90.3
FTCN [32] 53.1 95.8 98.2 86.4 83.4

RealForensics (ours) 79.7 95.3 98.4 97.6 92.8

Table 2. Robustness to common corruptions. Average AUC
scores (%) across five intensity levels for corruption types pro-
posed in [16], as well as the average score across all corruptions.

3. Main results
Cross-dataset generalisation. We train on FaceForen-
sics++ (FF++) [27] and then test on unseen datasets:
CelebDF-v2 [21], DFDC [8], FaceShifter [18], and Deep-
erForensics [16]. The video-level AUC results are given
in Table 1. Our detector obtains state-of-the-art perfor-
mance without (1) using auxiliary labelled supervision [14],
(2) heavily constraining the network by freezing large parts
[14] or removing spatial convolutions [32], nor (3) using
audio at test-time [34]. We also outperform the baseline of
training a CSN [29] network on the forgery data, indicating
the effectiveness of leveraging real data using our approach.

Robustness to common corruptions. We assess robust-
ness to unseen perturbations. The set of perturbations, pro-
posed in [16], are Gaussian noise and blur, pixelation, and
video compression. Each perturbation type is applied at five
intensity levels on raw FF++ samples. Table 2 presents the
average video-level AUC across all intensity levels for each
corruption type. RealForensics suffers significantly less
from common corruptions than frame-based methods that
target low-level cues, such as [3, 19], and also outperforms
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related video-based methods LipForensics and FTCN [32].

4. Conclusion
We propose RealForensics, an approach that uses large

amounts of unlabelled real data to detect fake videos. We
have shown that our method simultaneously achieves strong
cross-manipulation generalisation and robustness to com-
mon corruptions. We hope our study encourages future re-
search on leveraging real faces for robust forgery detection.
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