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1. Introduction

In the past decade, substantial efforts have been made to
build benchmarks, establish new tasks, and create learning
frameworks for egocentric video understanding. However,
the majority of works focus on visual scene analysis. It
presents significant challenges for designing powerful and
robust egocentric video understanding systems. First, peo-
ple with wearable devices usually record videos in naturalis-
tic surroundings, where a variety of illumination conditions,
object appearance, and motion patterns are shown. The dy-
namic visual variations introduce difficulties in achieving
accurate visual perception. Second, egocentric scenes are
often perceived within a limited field of view (FoV). The
common body and head movements of users cause frequent
view changes, which brings object deformation and creates
dynamic out-of-scene content. Therefore, it is difficult to
fully decode the surrounding information and perceive dy-
namic scenes in egocentric videos.

Audio, acting as an essential but less focused modality,
often provides synchronized and complementary informa-
tion with the video stream. In contrast to the variability of
first-person visual footage, sound provides stable and per-
sistent signals associated with the depicted events. There-
fore, audio is an essential ingredient for “cooking” egocen-
tric video understanding.

To capture fine-grained audio-visual association and
tackle the challenges in egocentric vision, in this paper, we
propose to solve an egocentric audio-visual object local-
ization task, which aims to associate audio with dynamic
visual scenes and localize sounding objects in egocentric
videos. We develop a new framework to explicitly model
the distinct characteristics of egocentric videos by integrat-
ing audio. Concretely, the egomotion in videos leads to
various object deformations, making it difficult to consis-
tently localize the sounding objects. Despite the downside,
we found that the egomotion also provides rich geometry
information about the underlying scene and hints at the rel-
ative geometric transformation between frames. Motivated
by this, we use the predicted geometric transformation to
mitigate the object deformation in the embedding space and
align the visual features. Based on the aligned features, we
further leverage the temporal contexts across frames to learn

discriminative cues for localization. Our localization model
aims to find precise audio-visual associations. However, the
results might be affected by: (i) noisy audio with back-
ground sound components; (ii) unrelated visual contents,
e.g., other silent objects. To this end, we propose a cascaded
feature enhancement module to mitigate the audio noise and
improve cross-modal localization robustness. Our frame-
work can be trained by taking nature audio-visual temporal
synchronization as the “free” supervision. We also annotate
an Epic Sounding dataset to facilitate quantitative compari-
son. In all, our contributions are: (i) an effective geometry-
aware temporal aggregation approach to deal with unique
egomotion in first-person videos; (ii) a novel cascaded fea-
ture enhancement module to progressively inject the au-
dio and visual features with localization cues; and (iii) an
Epic Sounding Object dataset with annotations on sounding
objects to benchmark the localization performance in ego-
centric videos.

2. Problem and Proposed Framework

Given an egocentric video clip V containing T frames
I = {Ii}Ti=1 and its synchronized sound stream s =∑N

n=1 sn, O = {Oi}Ti=1 are sounding objectness maps that
indicate locations of audible objects in the video frames.
Here, sn is the n-th sound source in the audio track. Note
that there could be multiple sound sources mixed together
(N ≥ 1) and not all of them associate with visual objects.
The task aims to predict each map Oi from the input frames
I , and the audio s. The motivation is to capture audio as-
sociated visual objects and mitigate potential audio noises
from audio-visual irrelevant sound sources. Since egocen-
tric videos have a limited FoV, out-of-screen sound sources
and egomotion originated from dramatic view changes are
ubiquitous. These characteristics of egocentric video data
make the problem very challenging.

To solve the egocentric audio-visual object localization
task, we propose a new framework as shown in Figure 1.
Our model first extracts representations from the audio s
and sampled frames I , and then performs cascaded feature
enhancement on both audio and visual branches. The train-
ing of audio enhancement network is driven by mix-and-
separate strategy [4, 7, 8], targeting to disentangle visually
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Figure 1. An overview of our egocentric audio-visual object localization framework. In the beginning, our model extracts deep features
from the video and audio streams. Then the audio and visual features are fed into the cascaded feature enhancement module to inject
localization cues for both branches. Such module is additionally trained with “mix-and-separation” strategy. Next, our geometric-aware
temporal modeling block leverages the relative geometric information between visual frames and performs alignment based temporal
context aggregation to get the final visual features for localization.

indicated sound sources. Benefiting from the enhanced au-
dio features, the sounding-irrelevant visual features can be
reweighted by means of audio-guided cross-modal atten-
tion. To deal with the egomotion in egocentric videos, our
model estimates the homography transformation between
the frames, and then apply it to align frame-level features
and aggregate temporal contexts. During training, we take
the audio-visual temporal synchronization as the supervi-
sion signal and use audio-guided cross-modal attention to
learn the map Oi. The network can be optimized in terms of
computed maps from sampled positive and negative audio-
visual pairs with Contrastive Learning. To further leverage
the temporal contexts in I , we solve the training in a Multi-
ple Instance Learning (MIL) setting.

2.1. Feature extraction

Visual representations. As shown in Figure 1, we first use
a shared visual encoder network Ev to extract visual fea-
ture maps for each input frame Ii. We adopt a pre-trained
Dilated ResNet model and remove the final fully-connected
layers. We can subsequently obtain a group of feature maps
v = {vi}Ti=1, where vi ∈ Rc×hv×wv . Here c is the number
of channels and hv × wv denotes the spatial content.
Audio representations. To extract audio representations
from raw waveform, we first transform audio stream s into
a magnitude spectrogram X with the short-time Fourier
transform (STFT). Then, we can compute audio features
by means of CNN encoder Ea in the Time-Frequency (T-
F) space. The resultant audio features a = Ea(s), a ∈
Rc×ha×wa . c is set as 512 in our experiment.

2.2. Cascaded feature enhancement

In practice, there could be sound sources, sn, which are
out-of-screen in egocentric videos due to the limited FoV.
For instance, frying sound and human speech may simulta-
neously be captured, while only the visual object of frying
sound is presented in the scene. In this case, these addi-
tional sound sources are essentially noise and can corrupt
subsequent audio representations. We propose to mitigate
these acoustic noises by disentangling visually guided au-
dio representations from the input audio.
Audio feature enhancement. Our goal here is to separate
the noisy components from the audio features. However,
the final localization objective cannot provide direct super-
vision to guide the disentanglement. Inspired by the audio-
visual source separation works [4, 7, 8], we adopt the com-
monly used “mix-and-separate” idea to provide additional
disentanglement supervision.

Given the current audio as s(1), we randomly sample an-
other audio stream s(2) from a different video and mix them
together to obtain an input audio signal s = s(1) + s(2). We
can then obtain a mixed spectrogram X and the other two
original magnitude spectrograms X(1) and X(2), respec-
tively. We define the audio feature enhancement as a func-
tion f(·, ·; θ1) , which takes the mixed spectrogram X and
visual feature vector as input. The output audio feature of f
should be disentangled from audio noise. In the module, we
apply spatial average pooling and temporal max pooling on
visual feature maps v to obtain a visual feature vector gv ∈
Rc. Then we replicate this feature vector ha×wa times and
tile them to match the shape of audio features. Lastly, the
audio feature enhancement is presented as â = f(a, gv; θ1).
In practice, we implement the disentanglement network f as



a two-layer MLP. Since the additive audio signal is known,
it is natural to supervise the training of f by solving a spec-
trogram mask generation task. Concretely, we add a task
decoder Da following the disentanglement network to out-
put a binary mask Mpred [8] (as shown in Figure 1). Note
that we use a U-NET style network [4] with skip connection
for effective predictions. The value of ground truth mask
Mgt is calculated by determining whether the original in-
put sound is dominant at locations (u, v) in the T-F space.
In this case, we compute the per-pixel L2 loss and there-
fore the enhancement learning objective can be written as
Lenhancement = ||Mpred −Mgt||2.
Soft localization. While the audio feature is enhanced, the
visual feature maps may contain sound-irrelevant regions
which require further improvement. To this end, we propose
to highlight the spatial regions that are more likely to be as-
sociated with the on-screen sounds. To achieve this, we ap-
ply max pooling on the spatial dimensions of â, obtaining an
audio feature vector gâ. For every visual feature vi, we com-
pute the cosine similarity as : Si : Si[x, y] = vi[x, y]× gâ,
where both features are l2 normalized and × denotes ma-
trix multiplication. Softmax is used on Si to generate a
soft mask that represents the audio-visual correspondence.
Hence, each vi can be attended with the calculated weights
v̂i = Softmax(Si) · vi.

2.3. Geometry-Aware Temporal Modeling

The uniqueness in egocentric videos such as egomotion
and distinct object appearance pose significant challenges
on egocentric audio-visual object localization. However,
such temporal variations in egocentric videos also reveal
rich geometric cues to recover the scene from changing
viewpoints. In our work, we leverage egomotion to esti-
mate the relative geometric transformation between frames,
and then apply the transformation at the feature-level to per-
form geometry-aware temporal aggregation (as shown in
Figure 1). Given {Ii}Ti=1 and their features {v̂i}Ti=1, we
take a v̂i as query each time and use the others as supports
to aggregate temporal contexts. For clarity, we decompose
the geometry-aware temporal aggregation into two parts:
Geometry modeling. Our objective in this step is to com-
pute the geometric transformation that represents the ego-
motion between frames. We found that homography esti-
mation, which can align images taken from different per-
spectives, can be approximately served as the way to mea-
sure geometric transformation. Specifically, we adopt a
commonly used idea that combines SIFT + RANSAC to
solve homography. With the query frame Ii and a sup-
porting frame Ij , we use h(·) to denote the entire process
Hji = h(Ij , Ii)j−→i, where Hji represents the homogra-
phy transformation from frame Ij to Ii. With the computed
homography transformation, we can then transform visual
features v̂j to v̂ji, which should be under the viewpoint of

Ii. Note that since the resolution of feature maps is scaled
down compared to the raw frame size, the homography ma-
trix H should also be downsampled using the same scal-
ing factor. The feature transformation can be written as:
v̂ji = Hji ⊗ v̂j , here ⊗ represents the warping operation.
Temporal aggregation. For the query feature v̂i, we now
have a set of aligned features {v̂ji}Tj=1. To aggregate the
temporal contexts, we propose to compute the correlation
between features at the same locations but from different
frames. Concretely, we implement the aggregation as a tem-
poral attention network (see Figure 1):

zi[x, y] = v̂i[x, y] + Softmax(
v̂i[x, y]v̂[x, y]

T

√
d

)v̂[x, y],

(1)
where v̂ = [v̂1i; ...; v̂Ti] is the concatenation of frame fea-
tures. The scaling factor d equals the feature dimension and
(·)T represents the transpose operation. The same aggrega-
tion is run over all the spatial locations (x, y) to get the final
visual feature zi.

2.4. Training Objective

With the audio feature vector gâ and the visual fea-
tures {zi}Ti=1, we compute the audio-visual attention map
Si for each frame Ii. We then adopt a differential thresh-
olding on Si to generate pseudo sounding objectness map
mi = sigmoid((Si − ϵ)/τ), which represents the location
of sounding objects. Here ϵ is the threshold and τ denotes
the temperature that controls the sharpness.

Since multiple audio-visual pairs are provided, we can
solve the localization task in MIL setting to reduce the
uncertainty. Concretely, we use a softmax MIL pooling
function to aggregate the concatenated attention maps S =
[S1; ...;ST ] by assigning different weights Wt to St at dif-
ferent time steps: S =

∑T
t=1(Wt · S)[:, :, t]. In this way,

for each video clip V in the batch, we can define its posi-
tive signal as P = 1

|m| ⟨m,S⟩ and negative training signals
as N = 1

hw ⟨1, Sneg⟩. We obtain Sneg by associating the
current visual inputs I with audios from other video clips.
1 denotes an all ones tensor with shape h × w. Therefore,
the localization and the overall objectives are:

Lground = − 1

N

N∑
k=1

[log
exp(Pk)

exp(Pk) + exp(Nk)
], (2)

L = Lground + λLenhancement. (3)

3. Experimental Results
In this work, we train our framework on the large-scale

egocentric video dataset Epic-Kitchen [3], which contains
synchronized video and audio recordings and covers diverse
acoustic kitchen scenarios. To facilitate quantitative com-
parison, we annotate an Epic-Sounding Object dataset and



Figure 2. Qualitative comparison on Epic Sounding Object
dataset. We show diverse sounding objects in the kitchen scenes
at the first row, sounding objects are annotated in red boxes. Our
method outperforms all the compared works.
report three commonly used evaluation metrics [2, 5]: Con-
sensus Intersection over Union (cIoU), Area Under Curve
(AUC), and F-score (annotated vs. predicted sounding ob-
ject bounding boxes). We use 0.3 as the IoU threshold.

To validate the effectiveness of our framework, we com-
pare it with four audio-visual localization methods: Seno-
cak et al. [6], Afouras et al. [1],Chen et al. [2] and Li et
al. [5]. Note that Li et al. [5] utilizes weak labels for training
localization model, which is not available in our training set.
We adapt Li et al.’s work to train with our self-supervised
localization loss. Since these recent works are all devel-
oped for third-person view videos, we retrain their methods
on our training data for a fair comparison. The quantitative
results are shown in Table 1. We can find that our method
outperforms all the compared approaches in a large margin
in both box-level and pixel-level evaluation metrics, indi-
cating the benefits of mitigating audio noises and explicitly
modeling egomotion in learning egocentric audio-visual lo-
calization. Moreover, we provide a qualitative comparison
to showcase our localization results visually. In Figure 2,
we can find that our model produces localization results that
tightly enclose the ground truth sounding objects.

To analyze the effectiveness of each design in our net-
work, we conduct an ablation study to illustrate how each

Method F-score@0.3 cIoU@0.3 AUC

Senocak et al. [6] 0.052 0.036 0.091
Li et al. [5] 0.109 0.140 0.144
Afouras et al. [1] 0.131 0.159 0.151
Chen et al. [2] 0.136 0.179 0.169
Ours 0.294 0.337 0.235

Table 1. Quantitative comparison of localization results on Epic
Sounding Object dataset. The top-1 results are highlighted.

Model GATM SL AE F-score@0.3 cIoU@0.3 AUC

a ✓ 0.261 0.299 0.218
b ✓ ✓ 0.270 0.308 0.222
c ✓ ✓ ✓ 0.294 0.337 0.235

Table 2. Ablations study with top-1 results highlighted.

module affects the localization performance (in Table 2):
model a: we take the model with geometry-aware tempo-
ral modeling (GATM) as our baseline; while in model b,
we incorporate the soft localization (SL) from the pipeline;
and in model c, we employ the audio enhancement func-
tion (AE) to perform cascaded feature enhancement. The
comparisons demonstrate that SL slightly improves the per-
formance; by further incorporating audio feature enhance-
ment, the localization performance is largely boosted as the
audio noise is mitigated, and it yields positive effects on the
audio-guided cross-modal attention computation.
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