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1. Introduction

This work aims at exploring audio-visual self-supervised
learning from movies that are long-form and uncurated,
while examining its differences with the more prevalent sce-
nario of learning from short and curated videos. Datasets
used for self-supervised video representation learning often
consist of large catalogues of short videos [5, 7]. The short
length of the videos, and the shear number of them has led to
an underlying i.i.d assumption of data distribution, based on
which many of the prior works have been developed. With
the data of such nature, there is often an implicit assump-
tion of within-video semantic consistency [4, 12], which is
intuitive as the likelihood of a short video containing a sin-
gle semantic concept or at least very coherent ones is rel-
atively high. On that basis, prior works [4, 12] treat dif-
ferent clips of a given video as augmentations of the same
semantic concept. Hence, minimizing a contrastive objec-
tive is set to encourage two clips that are sampled from the
same video to become more similar in the latent embedding
space, while repelling pairs where clips come from two dif-
ferent video instances. Here we argue that such an assump-
tion is not universal, and in fact is sub-optimal when learn-
ing from long-form content like movies. In the following,
we identify three main characteristics for clips derived from
a collection of long-form contents.

Semantic Diversity. Long-form content often contains
a diverse set of semantic concepts, e.g. characters, actions,
and environments. Thus, unlike the short-video regime, ran-
dom clips from the a long-form source are very likely to
be semantically dissimilar. This characteristic encourages
within-content negative sampling, shown in the Figure 1.

Non-Semantic Consistency. Movies usually have un-
derlying attributes such as color palettes, thematic back-
ground music, and other artistic patterns, some also as a
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result of post production. These artifacts, often consistent
throughout the content, are independent of the audiovisual
semantics that are being depicted. We argue that consider-
ing all clips of a long-form video to be semantically corre-
spondent, as it is practiced in the prior works like [4, 12],
could lead to the model relying on such irrelevant artifacts
and ignoring the semantics of the content.

Reoccurring Concepts. Concepts such as environ-
ments, and characters, often re-appear with minute varia-
tions throughout a movie. Thus, even though random clips
of the same long-form content are likely semantically dis-
similar, the possibility of a semantic correspondence even
between temporally distant clips still exists. This can the-
oretically lead to the class-collision phenomenon which is
naturally the price of negative sampling on unlabeled data.
However, due to semantic diversity, its likelihood is rela-
tively low, as random pairs are more likely to represent dif-
ferent concepts, as semantic diversity grows.

The characteristics mentioned above, suggest exploring
within-content negative sampling, with the possibility of di-
minishing returns past a certain level of emphasis. We ex-
plore such hypothesis, and experiment with the extent to
which negative sampling could be helpful in this context.

2. Approach
Notations and Architecture. Our pretraining dataset

is denoted by X = {Xn|n ∈ [1 · · ·N ]}, where Xn =
{xn,m|m ∈ [1 · · ·Mn]} contains Mn non-overlapping au-
diovisual snippets which are temporally segmented from
the duration of the nth long-form content (movie) in the
dataset. Each snippet includes both audio and video modal-
ities, formally xn,m = (an,m, vn,m). Video and audio are
processed through 18-layers deep R(2+1)D and ResNet ar-
chitectures, respectively referred to as f : R3 → Rdf and
g : R1 → Rdg . We use projection heads, hf : Rdf → Rd

and hg : Rdg → Rd, to map corresponding representations
into a common d-dimensional space before computing the
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Figure 1. The non-i.i.d nature of data distribution in long-form content: Left shows sampled frames from two different movies, one
in each row, where we can observe non-semantic consistency, in form of color pallet driven artifacts (bottom row is generally darker),
across different clips of each movie. Due to semantic diversity, negative sampling from within a movie is safe as it would mostly result
in semantically non-correspondent pairs of clips. However, because of reoccurring semantic concepts, there still exists a possibility of
constructing a negative pair from semantically similar clips which will not be ideal.

contrastive loss. We discard the projection heads and use f
and g for transfer learning on respective downstream tasks.

Loss Function. With a slight abuse of notation , B =
{xi = (ai, vi)|i ∈ [1 · · ·B]} represents a minibatch of
size B, where video and audio modalities associated with
the ith instance, xi, are denoted by vi and ai. We use
ziv = hf (f(vi)) and zia = hg(g(ai)) to represent the asso-
ciated embeddings generated by projection heads, and opti-
mize the noise contrastive estimation (NCE) loss shown in
Equation 1 in order to maximize the symmetric joint prob-
ability between a corresponding audio and video. For the
ith element in the minibatch, (ziv, z

i
a) serves as the posi-

tive pair, while assuming negative pairs for both modalities,
Ni = {(ziv, zja), (zjv, zia)|j ∈ [1 · · ·B], i ̸= j} constitutes
the set of negative pairs.
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Sampling Policy. Equation 1, is computed over B train-
ing instances, each in the form of an audiovisual snippet.
A naive sampling policy may ignore the fact that snip-
pets comprising the pretraining dataset are in fact tem-
poral segments trimmed from longer-form contents, i.e.
movies. Such an assumption treats our training data as inde-
pendent and identically distributed random variables from⋃N

n=1 Xn, which constitutes the default sampling policy
that is commonly used in the general deep learning liter-
ature. However, as detailed in Section 1, the underlying
artifacts (within-content non-semantic consistency), in ad-
dition to commonalities and correlations along the tempo-
ral axis of a long-form content (reoccurring semantic con-
cepts), contribute to breaking the previously discussed i.i.d
assumption on the training data. We hypothesize that during
training, model gradually discovers previously mentioned
content-exclusive artifacts, and latches onto those to quickly
minimize Equation 1 leading to sub-optimal generalization.

The reason being B ≪ N , hence for n ∼ U(1, N) and
m ̸= m′, P(xn,m ∈ B ∧ xn,m′ ∈ B) is very low. In other
words, if a naive random sampling policy is adopted, the set
of negative pairs in Equation 1 would mainly include audio-
video pairs from two different movies. As shown in Figure
1, this results in easy cross-content negatives. To prevent
the model’s reliance on artifacts, our approach emphasizes
the within-content negative pairs by dividing the minibatch
budget of B, across B/k randomly chosen long-form con-
tents, where we sample k snippets from each. It is worth
reiterating that the prior works [4,12] encourage temporally
distant segments of the same video to be similar (positive
pair) in the latent embedding space. In contrast, we treat
such instances as a negative pair and aim for the optimiza-
tion to push them apart from one another. We first uniformly
sample a long-form content, n ∼ U(1, N) and then draw
k distinct snippets from Xn, creating {xn,m|m ∈ Mn},
where Mn ⊂ [1 · · ·Mn] and |Mn| = k. This ensures that
for xi ∈ B, Ni always includes 2k − 2 pairs sampled from
the same movie to which xi belongs. By putting constraints
on Mn, specifically how temporally far from each other
the k samples are drawn, we may go one step further and
to some extent control the audiovisual similarity between
snippets. This serves as an additional knob to tune for hard
negative sampling, as temporally nearby snippets tend to
share more commonalities.

k ≤ max[Mn] − min[Mn] + 1 ≤ w ≤ Mn defines
the bounds on our sampling policy, where w, standing for
a sampling window, determines the farthest two out of k
samples drawn from Xn can be. Accordingly, w = k repre-
sents the case where all k samples are temporally adjacent,
hence the expected audiovisual similarity is maximized due
to temporal continuity in content. In our preliminary stud-
ies, we observed that having such level of hard negatives,
even with a small k, prevents proper training and results in
performance degradation. On the other hand, w = Mn in-
dicates random sampling where no temporal constraint is
imposed on Mn, thus samples are less likely to be drawn
from adjacent time-stamps. The rest of the spectrum pro-



vides middle grounds where two samples drawn from Xn

can at most be w + 1 snippets apart.

3. Experiments

Downstream Evaluation. We follow recent works
[1, 2, 9, 10, 13] and perform transfer learning on UCF101
[14] and HMDB51 [8] for action recognition, along with
ESC50 [11] for audio classification. We further evaluate
our models on datasets which are larger in scale, namely
Kinetics-400 [7] and VGGSound [3]. For implementation
details please refer to the extended version [6]. Illustrated
in figure 2, we observed that increasing k beyond 1 results
in harder pretraining objectives as more within-content neg-
ative samples are contributing to the denominator of the
Equation 1. Meanwhile, increasing the difficulty of the self-
supervised pretext task is leading to better downstream per-
formance, in a linear evaluation regime on different down-
stream tasks. With an effective batch size of 96, spanning
k across the full spectrum allows us to study how self-
supervised pretraining is influenced by different amounts of
video-level diversity.

Figure 2. Effect of emphasizing on within-content negative sam-
pling through increasing k during pretraining. Downstream trans-
fer learning performances are measured in a linear evaluation
regime. For HMDB51, UCF101 and ESC50, numbers are reported
on the split-1 of the corresponding datasets. For Kinetics-400
(K400) and VGGsound, we use their validation sets. Sampling
window (w) is set to 4 times as k. By emphasis on within-content
negative sampling, compared to k = 1 baseline, we achieve gains
of 4.90% on HMDB51, 7.24% on UCF101, 3.25% on ESC50,
1.63% on Kinetics-400, and 0.04 mAP on VGG-Sound.

protocol: linear evaluation on split-1

method pretraining HMDB51 UCF101 ESC50

XDC [2] IG-Random 49.9 80.7 84.5
XDC [2] IG-Kinetics 56.0 85.3 84.3
ours movies 63.5 79.8 82.5

protocol: finetuning on split-1

XDC [2] IG-Random 61.2 88.8 86.3
XDC [2] IG-Kinetics 63.1 91.5 84.8
ours movies 73.0 89.7 88.7

Table 1. Learning from movies as a source of semantically uncu-
rated pretraining data.

Pretraining on Uncurated Data: To the best of our
knowledge, the only uncurated dataset used in literature
for audio-visual self-supervised learning is IG-Random [2]
which has 65M training videos. It is an uncurated version
of the weakly-supervised collected IG-Kinetics [5] where
videos were retrieved by tags relevant to the categories in
the Kinetics dataset [7]. Alwassel et.al [2] argue that self-
supervised pretraining on likes of IG-Kinetics [5], and other
supervised datasets for that matter, introduces additional
privileges since even without using labels, training videos
are still biased due to the sampling distribution (e.g., taxon-
omy of the curated dataset). In this work, from a large cata-
logue of movies, we’ve randomly selected ∼3.6K films, an
equivalent of 0.7 years worth of content (30 times smaller
than IG-Random [2]), as our pretraining dataset, which as
discussed in Section 1, like IG-Random [2] is semantically
uncurated. Table 1 compares our approach against XDC
[2]. In the finetuning regime, our model trained on a col-
lection of movies consistently outperforms XDC [2] with a
large margin across three different tasks. Although, the gap
reduces in the linear evaluation protocol.

Comparison with the state-of-the-art: Table 2 com-
pares our proposed approach against the best performing
audiovisual self-supervised learning methods. For fair-
ness, we included specifics of architectures and pretraining
datasets used in each method. In general, we achieve very
competitive results on HMDB51 [8], however on UCF101
[14], our numbers do fall behind. Please note the pretraining
datasets used by other methods are all curated, with the ex-
ception of IG-Random [2], and are often significantly larger
than our pretraining data. On ESC50 [11] and Kinetics-400
[7], we achieve comparable results with state-of-the-art. For
instance, on Kinetics-400 [7], while using the same back-
bone architecture, our model performs on par with AVID [9]
despite it has been pretrained on the same Kinetics-400 [7]
dataset. Finally, we did experiment with VGGSound [3]
and obtained 0.38 and 0.48 mAP, respectively in linear and
finetuning evaluation regimes. For a more thorough com-



protocol: finetuning

Method Arch. Data HMDB51 UCF101

GDT [10] R(2+1)D-18 IG-K 72.8 95.2
AVID [9] R(2+1)D-18 AS 64.7 91.5
XDC [2] R(2+1)D-18 IG-K 68.9 95.5
MMV [1] R(2+1)D-18 AS 70.1 91.5
CVRL [12] R3D-50 K400 66.7 92.2
BraVe [13] TSM-50 AS 75.3 95.6

protocol: linear evaluation

MMV [1] R(2+1)D-18 AS 60.0 83.9
CVRL [12] R3D-50 K400 57.3 89.2
BraVe [13] TSM-50 AS 69.1 93.4

Ours R(2+1)D-18 Movies 64.6 80.8

protocol: linear Evaluation

Method Arch. Data ESC50 K400

AVID [9] R(2+1)D-18 K400 79.1 44.5
XDC [2] R(2+1)D-18 K400 78.5 –
AVID [9] R(2+1)D-18 AS 89.1 48.9
MMV [1] R(2+1)D-18 AS 85.6 –
CVRL [12] R3D-50 K400 – 66.1
BraVe [13] TSM-50 AS 92.1 –

Ours R(2+1)D-18 Movies 83.6 43.6

Table 2. Comparison with the state-of-the-art. Column “Data”
indicates the pretraining dataset with abbreviations as follows:
Kinetics-400, AudioSet, Youtube-8M, IG-Kinetics, and IG-
Random. For HMDB51, UCF101, and ESC50, we report the av-
erage results on all the folds.

parison please refer to [6].

4. Conclusion

We studied self-supervised pretraining on semantically
uncurated long-form content (i.e. movies). We identified
characteristics specific to movies, and explored how within-
content negative sampling harnesses them to improve rep-
resentation learning. Our experiments show that pretraining
on such data, even at a comparatively smaller scale to the
curated and supervised alternatives, can give rise to repre-
sentations capable of competing with the state-of-the-art.
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