
ECLIPSE: Efficient Long-range Video Retrieval using Sight and Sound

Yan-Bo Lin Jie Lei Mohit Bansal Gedas Bertasius
UNC Chapel Hill

Short Video Audiovisual Long Video
1 s

200 s

15 s

1 s

200 s

15 s

1 s

200 s

15 s

Long Video

Dense Sparse

“Someone puts onions in the skillet and

beats eggs and other ingredients into a

bowl before adding them to the skillet too.”

Figure 1. Comparison of different high-level frameworks for long-range text-to-video retrieval. Most traditional text-to-video retrieval
methods (Leftmost Column) are designed for short videos (e.g., 5-15 seconds in duration). Adapting these approaches to several-minute
long videos by stacking more input frames (Middle Column) is impractical due to excessive computational cost. Instead, our proposed
framework operates on sparsely sampled video frames and dense audio cues, which are cheaper to process (Rightmost Column). In
addition to being more efficient, our framework also achieves higher text-to-video retrieval accuracy than standard video-only approaches.

Abstract

We introduce an audiovisual method for long-range text-
to-video retrieval. Unlike previous approaches designed
for short video retrieval (e.g., 5-15 seconds in duration),
our approach aims to retrieve minute-long videos that cap-
ture complex human actions. One challenge of standard
video-only approaches is the large computational cost asso-
ciated with processing hundreds of densely extracted frames
from such long videos. To address this issue, we propose
to replace parts of the video with compact audio cues that
succinctly summarize dynamic audio events and are cheap
to process. Our method, named ECLIPSE (Efficient CLIP
with Sound Encoding), adapts the popular CLIP model to
an audiovisual video setting, by adding a unified audiovi-
sual transformer block that captures complementary cues
from the video and audio streams. In addition to being
2.92× faster and 2.34× memory-efficient than long-range
video-only approaches, our method also achieves better
text-to-video retrieval accuracy on several diverse long-
range video datasets such as ActivityNet, QVHighlights,
YouCook2, DiDeMo and Charades.
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Figure 2. We can scale our audiovisual ECLIPSE framework to
long videos more efficiently than dense video-only approaches.

1. Introduction

Fueled by the growing availability of video data, the last
few years have witnessed remarkable progress in the area
of text-to-video retrieval [1–3]. However, modern video re-
trieval systems are predominantly designed for very short
videos (e.g., 5-15 seconds in length). In contrast, the ma-
jority of real-world videos often capture complex human
actions, which may last several minutes or even hours.

Among prior vision-and-language methods [1, 4],
CLIP [5] stands out as one of the most widely adopted



models. Several recent approaches extended the original
CLIP method [5] to video [6] by independently process-
ing individual video frames and then averaging their pre-
dictions across time. However, these prior approaches are
often impractical in the long-range video setting because of
the large computational cost required to process hundreds or
even thousands of densely extracted video frames (See Fig-
ure 2). Furthermore, we note that while video modality is
rich in the information it stores, it also has high informa-
tional redundancy (i.e., the video content often changes lit-
tle in neighboring frames).

Based on this motivation, we introduce ECLIPSE, an
Efficient CLIP with Sound Encoding. Instead of processing
many densely-extracted frames from a long video (the mid-
dle column in Figure 1), our framework leverages comple-
mentary audio and video cues by operating on sparsely sam-
pled video frames accompanied by dense audio (the right-
most column in Figure 1).

In summary, our contributions are threefold. First, we
propose ECLIPSE, an audiovisual adaptation of CLIP that
leverages complementary video and audio cues for long-
range video retrieval. Second, we demonstrate that com-
pared to long-range video-only approaches, our audiovi-
sual framework leads to better video retrieval results at a
reduced computational cost. Lastly, we provide compre-
hensive ablation studies investigating the success factors of
ECLIPSE to inspire more future work in this area.

2. ECLIPSE: Efficient CLIP with Sound En-
coding

2.1. Obtaining Multimodal Input Embeddings

Video Patch Decomposition. Following the ViT [7],
we decompose each frame into N non-overlapping patches,
each of size P × P , and flatten these patches into vectors
x(p,t) ∈ R3P 2

where p = 1, . . . , N denotes spatial loca-
tions and t = 1, . . . , T indicates a frame index. A special-
ized CLS token v

(0)
cls is prepended to the visual sequence of

each frame. Finally, the embeddings V(0) ∈ RT×(N+1)×d

are used as visual inputs to our ECLIPSE model.
Audio Embeddings. Given an audio spectrogram Zt ∈

RM×C , an audio encoder maps it into audio embeddings
A

(0)
t ∈ Rd for each timestep t = 1 . . . T where as before,

T denotes the number of video frames.
Text Embeddings. We use a pretrained CLIP [5] text en-

coder to embed a textual video description y = (y1, . . . , yL)
into a textual embedding g ∈ Rd where g corresponds to
the CLS token of a given text sequence.

2.2. Audiovisual Attention Block

Although videos contain rich information, they are also
redundant and costly to process. In contrast, audio is more
compact and cheaper. Thus, we propose an audiovisual

attention block that gradually incorporates relevant audio
cues into the visual representation. Our audiovisual atten-
tion block consists of three distinct attention schemes: (i)
spatial visual attention, (ii) audio-to-video attention, and
(iii) video-to-audio attention. We next describe each of
these attention schemes in more detail.

Multi-Head Self-Attention. All of our three attention
schemes are implemented using a standard multi-head self-
attention:

MHA(Q,K,V) = Softmax

(
QK⊤
√
d

)
V, (1)

where Q,K,V are the query, key and value ma-
trices obtained using learnable projection weights
WQ,WK ,WV ∈ Rd×d respectively. With this for-
mal description of the MHA function, we can now proceed
to the definitions of the three attention schemes in our
audiovisual attention block.

Spatial Attention. In order to preserve the pretrained
network structure of CLIP, we use an identical spatial atten-
tion scheme as in their model. Intuitively, the spatial atten-
tion enables our model to obtain discriminative frame-level
representation by aggregating relevant information from the
visual tokens in the individual video frames. We can imple-
ment this scheme using our previously defined MHA func-
tion as:

S
(ℓ)
t = MHA(V

(ℓ−1)
t ,V

(ℓ−1)
t ,V

(ℓ−1)
t ) +V

(ℓ−1)
t . (2)

Here, S(ℓ)
t ∈ R(N+1)×d is our newly computed spatial self-

attention representation for frame t, and V
(ℓ−1)
t is a visual

patch representation for frame t from the previous trans-
former layer l − 1, which is used as input to the the trans-
former layer l. Note that in the spatial self-attention, the
multi-head self-attention is applied independently for each
of T video frames. As discussed above, this enables us to
preserve the network structure of the original CLIP model,
which is essential for good text-to-video retrieval perfor-
mance. For brevity, we omit the layer normalization op-
eration, which is applied to V

(ℓ)
t before feeding it to the

spatial attention block. The right part of Figure 3 provides
a visual illustration of where spatial attention fits within our
audiovisual attention block

Audio-to-Video Attention (A2V). To efficiently incor-
porate temporal audio cues into static video frame repre-
sentation, we use an audio-to-video (A2V) attention mech-
anism, which is also illustrated in the right part of Figure 3
(labeled as Cross-Attn A2V module). This operation can be
written as:

V
(ℓ)
t = MHA(S

(ℓ−1)
t ,A(ℓ−1),A(ℓ−1)) + S

(ℓ−1)
t . (3)

Here, A(ℓ−1) ∈ RT×d depicts our previously defined audio
representation at layer l − 1, and S

(ℓ−1)
t ∈ R(N+1)×d de-
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Figure 3. We adapt CLIP [5] to long-range text-to-video retrieval by adding an efficient audiovisual attention block into the Transformer
architecture. First, we obtain fixed dimensional text, audio, and visual feature embeddings. Afterward, the visual and audio embeddings
are fed into our ECLIPSE audiovisual backbone, which injects relevant audio information to video and vice-versa. This is accomplished
using a dual-pathway audiovisual attention block (illustrated on the right), which is stacked on top of each other F times. Afterward,
the audiovisual video segments are aggregated using temporal pooling, and the model is optimized by maximizing the similarity between
audiovisual and textual embeddings using a contrastive loss function.

notes a spatial video representation at timestep t computed
using our previously defined spatial attention block. Intu-
itively, the new visual representation V

(ℓ)
t is computed as

a weighted summation of the audio features, which enables
the model to incorporate long-range audio cues into the vi-
sual features. Furthermore, because the audio representa-
tion is compact, the operation above can be implemented
efficiently.

Video-to-Audio Attention (V2A). Conversely, to inject
rich visual information into compact audio features, we use
a video-to-audio (V2A) attention mechanism (illustrated in
Figure 3 as Cross-Attn V2A module). We implement this
attention scheme as:

A
(ℓ)
t = MHA(A

(ℓ−1)
t ,S

(ℓ−1)
t ,S

(ℓ−1)
t ) +A

(ℓ−1)
t . (4)

At a high-level, the operation above computes a new au-
dio feature representation for each timestep t as a weighted
combination of all the visual token features at tiemstep t.
This allows us to improve the richness and expressivity of
the audio representation.

Final Audiovisual Representation. Following
CLIP4Clip [6], we stack our audiovisual attention block
F times (F typically being set to 12). Afterward, we
perform temporal pooling over the CLS tokens across all
video frames, to obtain the final audiovisual representation
f ∈ Rd.

2.3. Loss Function

We use a contrastive video-to-text matching loss to train
our model. The similarity between text and video is com-

puted using a normalized dot product between the two em-
beddings f and g. We consider the matching text-video
pairs in a given batch as positive samples and all the other
pairs in that same batch as negative samples. To train our
model, we minimize the sum of the video-to-text and text-
to-video matching losses:

Lv2t = − 1

B

B∑
i=1

log
exp(f⊤i gi)∑B
j=1 exp(f

⊤
i gj)

, (5)

Lt2v = − 1

B

B∑
i=1

log
exp(g⊤

i fi)∑B
j=1 exp(g

⊤
i fj)

, (6)

where fi and gj are the normalized embeddings of i-th
video and the j-th text sequence, respectively.

3. Experimental Setup

3.1. Downstream Datasets

We evaluate ECLIPSE on five diverse datasets that con-
tain long-range videos: ActivityNet Captions [8], QVHigh-
lights [9], DiDeMo [10], YouCook2 [11], and Cha-
rades [12].

3.2. Evaluation Metrics

We use standard video retrieval evaluation metrics [4, 6]
such as text-to-video R@1, R@5, R@10, video-to-text
R@1, and mean rank (MnR) to validate the effectiveness
of our ECLIPSE model.



Table 1. Our results on ActivityNet Caption, QVHighlights (QVH), YouCook2 (YC2), Charades and DiDeMo using the R@1 metric.
ECLIPSE outperforms all prior approaches while also being more efficient.

Method Pretrain Frames ActivityNet [8] QVH [9] DiDeMo [10] YC2 [11] Charades [12] GFLOPs

ClipBERT [4] C+G 32 21.3 43.2 20.4 29.8 6.7 -
FiT [2] CW 32 - 55.0 34.6 32.2 11.9 -
CLIP4Clip [6] W 64 40.7 68.5 43.4 36.7 12.6 836
CLIP4Clip∗ W 96 41.7 70.2 42.5 37.6 13.9 1251
ECLIPSE W+V 32 42.3 70.8 44.2 38.5 15.7 827

4. Results and Analysis
4.1. Results on Long-range Datasets

We validate our approach on five long-range video
datasets: ActivityNet Caption [8], QVHighlights [9]
(QVH), DiDeMo [10], YouCook2 [11] (YC2), and Cha-
rades [12].

Our results in Table 1, demonstrate that
ECLIPSE outperforms all prior methods on all four datasets
by a substantial margin. In particular, ECLIPSE achieves
1.6%, 2.3%, 0.8%, 1.8%, and 2.9% better R@1 accuracy
than the strong CLIP4Clip baseline at a roughly similar
computational cost of ≈ 830 GFLOPS on QVHighlights,
DiDeMo, YouCook2, and Charades respectively.

Furthermore, ECLIPSE also outperforms our stronger
96-frame CLIP4Clip∗ method on all four datasets while op-
erating on 3× less frames (i.e., 32 vs. 96), thus, being con-
siderably more efficient (827 vs. 1251 GFLOPs).

Based on these results, we can make the following two
observations: (i) ECLIPSE is highly effective when applied
to long videos spanning at least several minutes, (ii) our
method generalizes to a diverse set of videos (e.g., cook-
ing, fitness instructions, daily activity, news videos, etc.),
(iii) audio cues can be used to replace many redundant and
costly to process video frames.

5. Conclusions
In this paper, we present a novel audiovisual frame-

work, ECLIPSE, for long-range video retrieval. By re-
placing costly and redundant parts of the video, with com-
pact audio cues, ECLIPSE efficiently processes long-range
videos while also obtaining better performance than stan-
dard video-only methods. Our audiovisual framework is
(i) flexible, (ii) fast, (iii) memory-efficient, and (iv) it
achieves state-of-the-art results on five diverse long-range
video benchmarks. In the future, we plan to extend our
method to other multimodal video understanding tasks such
as video question answering and video captioning.

References
[1] S. Liu, H. Fan, S. Qian, Y. Chen, W. Ding, and Z. Wang,

“Hit: Hierarchical transformer with momentum contrast for
video-text retrieval,” in ICCV, 2021. 1

[2] M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen
in time: A joint video and image encoder for end-to-end re-
trieval,” in ICCV, 2021. 1, 4

[3] V. Gabeur, C. Sun, K. Alahari, and C. Schmid, “Multi-modal
transformer for video retrieval,” in ECCV, 2020. 1

[4] J. Lei, L. Li, L. Zhou, Z. Gan, T. L. Berg, M. Bansal, and
J. Liu, “Less is more: Clipbert for video-and-language learn-
ing via sparse sampling,” in CVPR, 2021. 1, 3, 4

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al.,
“Learning transferable visual models from natural language
supervision,” in ICML, 2021. 1, 2, 3

[6] H. Luo, L. Ji, M. Zhong, Y. Chen, W. Lei, N. Duan, and T. Li,
“CLIP4Clip: An empirical study of clip for end to end video
clip retrieval,” arXiv Preprint, 2021. 2, 3, 4

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An im-
age is worth 16x16 words: Transformers for image recogni-
tion at scale,” in ICLR, 2021. 2

[8] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. Car-
los Niebles, “Dense-captioning events in videos,” in ICCV,
2017. 3, 4

[9] J. Lei, T. L. Berg, and M. Bansal, “Qvhighlights: Detect-
ing moments and highlights in videos via natural language
queries,” in NeurIPS, 2021. 3, 4

[10] L. Anne Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Dar-
rell, and B. Russell, “Localizing moments in video with nat-
ural language,” in ICCV, 2017. 3, 4

[11] L. Zhou, C. Xu, and J. J. Corso, “Towards automatic learning
of procedures from web instructional videos,” in AAAI, 2018.
3, 4

[12] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta, “Hollywood in homes: Crowdsourcing data
collection for activity understanding,” in ECCV, 2016. 3, 4


