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Abstract

Machine learning techniques have proved useful for
classifying and analyzing audio content. However, recent
methods typically rely on abstract and high-dimensional
representations that are difficult to interpret. In this paper,
we propose adapting the transformation-invariant cluster-
ing paradigm–which has shown impressive results for both
image and 3D data–to the audio domain in a supervised set-
ting. This results in an audio classification model based on
prototypical sounds that can be heard directly. Evaluated
on speaker and instrument identification tasks, our method
produces state-of-the-art results while remaining easily in-
terpretable.

1. Introduction

The emergence of deep learning approaches dedicated to
audio analysis has led to significant performance improve-
ments [1, 15]. Although these methods take sound clips as
input, they typically rely on a latent space of high dimen-
sion, making the interpretation of their decisions difficult
and limiting the insights gained on the data and the consid-
ered task. Deep learning-enabled transformation-invariant
clustering [10,12,13] is a recent method in which decisions
are based on a small collection of prototypes existing in the
same space as the input samples, e.g. images or 3D point
clouds. Each prototype learns a limited set of transforma-
tions in the manner of Spatial Transformation Networks [7],
allowing them to approximate a rich but consistent portion
of a sample collection. We propose adapting this approach
to the audio domain, which results in both high classifica-
tion accuracy and improved interpretability. Our model is
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Figure 1. Playable Prototypes. Our model consists of a set of
spectral prototypes that can automatically adjust their pitch and
amplitude to reconstruct input samples. We show such prototypes
learned from the SOL [3, 6] and Librispeech [16] datasets.

trained in a supervised setting by tasking each prototype to
minimize the reconstruction error for the samples of an as-
signed class. We also propose to explicitly consider in the
loss function a soft class assignment based on the recon-
struction error.

2. Related Work

Audio Classification. Musical instrument and speaker
identification are two of the standard tasks used to bench-
mark audio classification models. While early musical in-
strument identification methods focused on distinguishing



Figure 2. Method overview. Given an input sound, we predict for each prototype a gain and pitch shift at each time stamp to generate the
output. Prototypes and transformations are learned jointly using both reconstruction and classification losses.

individual tones achieved appreciable precision, support
vector machine operating on spectro-temporal sound rep-
resentations can reach almost perfect accuracy. As shown
in [4], the supervised classification of instruments playing
individual notes could be considered solved [11]. Similarly,
speaker identification is mostly handled by convolutional
and/or recurrent neural networks [2], and also achieve al-
most perfect performances [21]. However, these models
rely on complex and abstract latent representations that are
not easily—if at all—interpretable, and cannot be visualized
as spectrograms or heard in the audio domain.

Prototype-Based Methods. Auto-Encoders [17,20] learn
a compact latent representation and are supervised by a re-
construction task. Through regularization(s) and/or con-
straint(s), the latent space can be made fit for various
tasks such as classification [14]. Yet, despite this con-
trollable structure, the learned features remain mostly non-
interpretable. Inspired by the literature on images [9], the
authors of [22] propose to generate prototypes from the la-
tent space with a frequency-dependent similarity measure
between the prototypes and the latent code. This similar-
ity can then be used for speech, music, and environmental
sound classification. However, since the prototypes are not
in the audio domain, their interpretability remains limited.

Transformation-Invariant Modeling. Deep transforma-
tion invariant clustering [12] learns explicit prototypes in in-
put space. Each prototype is equipped with dedicated trans-
formation networks, allowing a small set of prototypes to
faithfully represent a large collection of samples. The re-
sulting models can be used for downstream tasks such as
classification [12], few-shot segmentation [10], and even
multi-object instance discovery [13]. Jaderberg et al. [7]
also proposes to learn differentiable transformations in in-
put space, but applies them to the input instead of learned
prototypes. We propose to extend these ideas to the audio
domain by learning prototypical spectrograms along with
adapted transformations.

3. Method
We consider a set of N audio clips x1, · · · , xN , each

characterized by their log-mel-spectrogram with T time
steps and F mel-frequency bins. The samples are annotated
with class labels l1, · · · , lN . Our goal is to learn a set of K
interpretable prototypes in spectral space to explore datasets
and perform classification. We equip each prototype with a
set of dedicated transformation networks, that are jointly
trained to reconstruct audio samples from given classes.
The predicted transformations affect specific characteristics
of the prototypes, such as amplitude and pitch, allowing for
the faithful approximation of a wide variety of samples by
each prototype. As a consequence, prototypes can learn to
represent more meaningful audio attributes, such as timbre
or intonations.

3.1. Deep Transformation-Invariant Prototyping

We learn a set of K prototypes Pk ∈ RF , each associated
with two transformation networks T gain

k and T pitch
k . Each

transformation Tk takes an audio sample x as input and pre-
dicts a transformation in the spectral domain for each time
step t of the input. The resulting transformations are then
applied sequentially to the prototype Pk for each time step
to define the reconstruction Rk(x):

Rk(x)[t] = T pitch
k (x)[t] ◦ T gain

k (x)[t] (Pk) , (1)

where [t] denotes the t-th timestamp of a spectrogram, or the
spectral transformation to be applied at the t-th time step.
We propose to use two different transformations:
• Amplification. A given prototype should be able to re-
construct samples independently of their amplitude. We de-
fine a transformation T gain

k that maps an audio sample x to a
gain Gk(x)[t] ∈ R for each t, which we add to all frequen-
cies of the log-mel-spectrogram Pk. This corresponds to
adapting the amplitude of the prototype to an input sample.
• Pitch Shifting. A single prototype is expected to recon-
struct samples independently of their pitch. We define
T pitch
k , which produces a pitch shift Pk(x)[t] ∈ [1/2, 2] for

each time stamp t. We use this value to stretch the spectro-
gram using linear interpolation along the spectral axis.



Table 1. Results. Accuracy and reconstruction error computed on
the test sets of SOL [3, 6] and LibriSpeech [16].

OA AA Lrec

SOL [3, 6]
Direct Classification 97.8 94.8 —
APNet [22] 95.3 91.3 0.1

Ours 99.5 96.3 4.0

LibriSpeech [16]
Direct Classification 99.4 99.5 —
APNet [22] 97.8 97.8 0.2

Ours 99.9 99.9 3.1

3.2. Loss Functions

Each class is assigned a prototype and its associated
transformation networks which are trained to reconstruct
all samples from this class. We measure the quality of a
reconstruction as the average ℓ2 distance between the in-
put spectrogram and the transformed prototype for all time
steps. For an input audio sample x of class l, we define the
following reconstruction loss:

Lrec (x, l) =
1

T

T∑
t=1

∥x[t]−Rl(x)[t]∥2 . (2)

To better encourage the prototypes to discriminate be-
tween classes, we propose to jointly optimize the recon-
struction loss and the cross-entropy between the true label
and the soft minimum of the reconstruction error:

Lce (x, l) = − log

(
exp (−βLrec (x, l))∑K

k=1 exp (−βLrec (x, k))

)
, (3)

where β is a learnable parameter corresponding to the in-
verse temperature in the softmin. To train our network, we
use a weighted sum of both losses:

L(x, l) =
N∑

n=1

Lrec(xn, ln) + λceLce(xn, ln) , (4)

with λce an hyperparameter set to 0.01. At test time, we can
perform classification by predicting for a sample x the pro-
totype that provides the best reconstruction. The models Rk

are trained for classification through the supervision of their
reconstruction error. Our method is detailed in Figure 2.

3.3. Parameterization and Training Details

We implement functions G and P as one-dimensional
convolutional U-Net style networks [18] operating on the

temporal dimension. To save parameters, both transfor-
mation networks share the same encoder. The prototypes
P1, · · · , PK and the inverse temperature β are directly
learnable parameters of the model.

We ensure the stability of our model by gradually in-
creasing its complexity along the training procedure. We
first learn prototypes without any transformation. After
convergence, we sequentially equip each prototype with a
gain transformation and pitch-shifting.

We use the ADAM [8] optimizer with a learning rate of
10−4, and a weight decay of 10−6 for the transformation
networks and 0 for the prototypes and β parameter.

4. Experiments
Datasets. We evaluate our method for classification and
reconstruction tasks on the following two datasets:
• SOL [3, 6]. This dataset contains 24 450 samples of indi-
vidual notes played with various playing techniques by 33
different instruments and sampled at 44.1kHz. We evaluate
instrument classification.
• Librispeech [16]. This 1000-hour corpus contains En-
glish speech sampled at 16kHz. We selected the 128 pre-
dominant speakers from the train-clean-360 set. We
evaluate speaker classification.

For both datasets, we randomly selected 70% of the clips
for training, 10% for validation, and 20% for testing.

Metrics. To assess the quality of our model, we report the
following metrics:
• Overall Accuracy (OA). Percentage of input samples
correctly classified by our model, i.e. best reconstructed by
the prototype assigned to their true class.
• Average Accuracy (AA). Average of the classwise accu-
racy, computed across classes without weights.
• Reconstruction error (Lrec). To assess the quality of the
reconstruction, we also report the reconstruction error Lrec.

Baselines. To put the performance of our method in con-
text, we trained a temporal convolutional network to clas-
sify log-mel-spectrograms. We supervise this network with
the cross-entropy on the labels. This network, which does
not provide a reconstruction error, is called Direct Classi-
fication. We also evaluated the APNet [22] approach on
our datasets. However, this method is limited in its inter-
pretability, as it relies on latent prototypes and uses a fully
connected layer to classify samples based on their similarity
to the prototypes.

4.1. Quantitative Results

As shown in Table 1, our method reaches near perfect
accuracy for both datasets. We observe that APNet [22]
reaches better reconstruction scores than our model. This is
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Figure 3. Reconstruction of input clips. For each input sample
(top), we show the reconstruction provided by the model (middle)
and the error (bottom). Note how the timbre of the speaker or
instrument is well represented, as the model provides reconstruc-
tions of the inputs for varying pitches. This leads to an insightful
characterization of each instrument or speaker.

expected as APNet uses an encoder-decoder network which
can learn rich transformations to and from the latent space.
In contrast, we restrict the scope of the spectral transfor-
mations to learn prototypes that can only reconstruct mean-
ingfully samples from their assigned class. However, our
model is still capable of producing faithful reconstructions,
which would be suitable for audio generation tasks (see
Sec. 4.2).

4.2. Qualitative Results

Prototypes learn to reconstruct and recognize the origin
of audio samples obtained under various conditions: differ-
ent notes, techniques, words, etc. Furthermore, our model
automatically adjusts pitch and amplitude to fit an input
sound. Consequently, prototypes learn characteristics of
their assigned class that go beyond simple harmonic compo-
nents (see Figure 3). Instead, our model captures elements
of the timbre, such as their spectral envelopes [19], as seen
in Figure 1. This opens the way to further tasks such as
sound analysis [19] and timbre transfer [5].

5. Conclusion

We presented a new approach to audio understanding
by representing large collections of audio clips with few
prototypes equipped with learned transformation networks.
Our model produces concise, expressive, and interpretable
overviews of raw audio clips while retaining state-of-the-art
results for audio classification tasks.

6. Acknowledgements

This work was supported in part by ANR project
READY3D ANR-19-CE23-0007 and was granted access
to the HPC resources of IDRIS under the allocation 2022-
AD011012096R1 made by GENCI. We thank Theo De-
prelle, Nicolas Gonthier, Tom Monnier and Yannis Siglidis
for inspiring discussions and valuable feedback.

References
[1] Jakob Abeßer. A review of deep learning based methods for

acoustic scene classification. Applied Sciences, 2020. 1
[2] Zhongxin Bai and Xiao-Lei Zhang. Speaker recognition

based on deep learning: An overview. Neural Networks,
2021. 2

[3] Guillaume Ballet, Riccardo Borghesi, Peter Hoffmann, and
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