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1. Introduction
Visual speech recognition (VSR) aims to recognise the

content of speech based on the lip movements without re-
lying on the audio stream. Advances in deep learning and
the availability of large audio-visual datasets have led to the
development of much more accurate and robust VSR mod-
els than ever before. However, these advances are usually
due to larger training sets rather than the model design. In
this work, we demonstrate that designing better models is
equally important to using larger training sets. We propose
the addition of prediction-based auxiliary tasks to a VSR
model and highlight the importance of appropriate data aug-
mentations. We show that such model works for different
languages and outperforms all previous methods trained on
publicly available datasets by a large margin. We show fur-
thermore that using additional training data, even in other
languages or with automatically generated transcriptions,
results in further improvement.

2. Methodology
2.1. Prediction-based Auxiliary Tasks

The proposed model is shown in Fig. 1. It is based on
the hybrid/CTC architecture proposed in [8] which is aug-
mented with the addition of auxiliary tasks. We propose
as an auxiliary task the prediction from intermediate layers
of audio and visual representations learned by pre-trained
ASR and VSR models (pre-trained as explained in [8]).
This is inspired by the recent success of prediction tasks
in self-supervised learning. In particular, good audio rep-
resentations can be learned by predicting handcrafted au-
dio features [12] or by using joint audio and visual super-
vision [16]. Similarly, visual speech representations can
be learned by predicting audio features [7]. Hence, the
proposed auxiliary task provides additional supervision to
the intermediate layers of the model which in turns results
in better visual representations and improved performance.
This results in the following loss term added to loss func-
tion:
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Figure 1. Summary of the proposed model with prediction-based
auxiliary tasks. In this figure, the pre-trained ASR/VSR encoders
and some conformer layers are frozen and their internal represen-
tations are used as targets for the audio and visual predictors.

where xv and xa are the visual and audio input se-
quences, respectively, gv and ga are the pre-trained visual
and audio encoders, respectively. f is the subnetwork up to
layer l whose intermediate representation is used as input to
the audio and visual predictor ha and hv , respectively. βa

and βv are the coefficients for each loss term and ∥·∥1 is the
ℓ1-norm.

The model performs VSR and at the same time attempts
to predict audio and visual representations from intermedi-
ate layers. Hence, the final loss is the following:

L = LVSR + LAUX (2)

LVSR = αLCTC + (1− α)Latt (3)

where LV SR is the loss of the hybrid CTC/attention ar-
chitecture used. LCTC is the CTC loss, Latt the loss of the
attention mechanism and α controls the relative weight of
each loss term.

2.2. Time Masking

In this work we propose the use of time masking which
is commonly used in training ASR models [11]. It works by



Method Pre-training Set Training Set
Training Sets

Total Size (hours)
WER CER

Results on the LRS3 dataset

Using Publicly Available Datasets

KD+CTC [3] VoxCeleb2clean LRS3 772 59.8 -

CM-seq2seq [8] LRW LRS3 595 43.3 -

Ours - LRS3 438 37.9 -

Ours LRW LRS2+LRS3+AVSpeech+VoxCeleb2 3 388 26.1 -

Using Non-Publicly Available Datasets

TM-seq2seq [1] MVLRS+LRS2 LRS3 1 391 58.9 -

V2P [15] - LSVSR 3 886 55.1 -

RNN-T [10] - YT-31k 31 000 33.6 -

ViT3D-TM [13] - YT-90k 90 000 25.9 -

ViT3D-CM [14] - YT-90k 90 000 19.3 -

Results on the CMLR dataset

LIBS [19] - CMLR 61 - 31.3

CTCH [9] - CMLR 61 - 22.0

Ours - CMLR 61 - 9.1

Results on the CMU-MOSEAS-Spanish (CMes) dataset

CM-seq2seq [8] LRW CMes+MTes 244 58.1 -

Ours LRW CMes+MTes 244 50.4 -

Table 1. Summary of our results. WER: Word Error Rate. CER: Character Error Rate.

randomly masking n consecutive frames by replacing them
with the mean sequence frame. This allows the model to
more effectively use contextual information and can better
disambiguate similar lip movements which correspond to
different phonemes. It also makes the model more robust to
short missing segments.

3. Experiments

3.1. Datasets

For the purposes of this study we use the LRS3 [2]
dataset, which is the largest publicly audio-visual English
dataset collected from TED talks, CMLR [18], which is
the largest audio-visual Mandarin dataset collected from
Chinese national news program, and CMU-MOSEAS-
Spanish (CMes) [17], which is an audio-visual Spanish
dataset. Furthermore, we also use the English-only version
of VoxCeleb2 [4], and AVSpeech [6]. The transcriptions for
these datasets are automatically generated using the ASR
model from Wav2Vec2-Base-960h1.

1https://huggingface.co/facebook/wav2vec2-base-
960h

3.2. Results

Results on LRS3, which is an English audio-visual
dataset, are presented in Table 1. Our proposed ap-
proach significantly outperforms all existing works which
are trained using publicly available datasets. In particular,
our method leads to better performance than the state-of-
the-art [8] even though it is trained only on the LRS3 train-
ing set and no external datasets are used for pre-training. In
case of additional training data being available, our method
leads to an 17.2 % absolute improvement in word error rate
(WER) over the state-of-the-art [8]. It is worth pointing that
such a significant improvement is observed although auto-
matically generated transcriptions are used for AVSpeech
and VoxCeleb2. This confirms the recent trend observed
in the literature where using larger training sets results in
better performannce. We should also emphasize that we
achieve a very similar WER to [13] despite using 26.5 times
less training data.

Results on the CMLR dataset, which is a Mandarin
audio-visual dataset, are also shown in Table 1. We report
performance in terms of character error rate (CER) instead
of WER because Chinese characters are not separated by
spaces. Our approach results in a significant reduction in

https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/facebook/wav2vec2-base-960h


the CER over all existing works. We achieve an absolute
improvement of 12.9 % in CER over the state-of-the-art [9].

Results on the CMU-MOSEAS-Spanish dataset, which
is an audio-visual Spanish dataset, are shown in Table 1.
Given that this is a small dataset it is not possible to train an
accurate model without using additional data. For this pur-
pose, we first pre-train the model on the LRW dataset [5]
and then fine-tune it on the training sets of CMU-MOSEAS
using the Spanish videos only. Since this is a new dataset
and there are no results from prior works, we have trained
the end-to-end model presented in [8] to serve as the base-
line. Our proposed approach results in a 7.7 % absolute re-
duction in the WER.

4. Conclusion
In this work, we presented our approach for visual

speech recognition and demonstrated that state-of-the-art
performance can be achieved not only by using larger
datasets, which is the current trend in the literature, but also
by carefully designing a model. We proposed a new archi-
tecture based on auxiliary tasks where the VSR model also
predicts audio visual representations learned by pre-trained
ASR and VSR models. Our approach outperforms all ex-
isting VSR works trained on publicly available datasets in
English, Spanish and Mandarin by a large margin.
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