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1. Introduction

Video-to-speech synthesis (also known as lip-to-speech)
can be described as speech generation from silent video,
typically focused on lip movements. Although this task can
be achieved through a combination of lipreading and text-
to-speech, directly predicting speech sidesteps the need for
text transcriptions and thus allows leveraging large amounts
of unlabelled audio-visual data. Furthermore, this task has
compelling applications, such as audio retrieval from video
streams (e.g., videoconferencing) where the speech is either
deteriorated or absent altogether, and generating artificial
speech for people suffering from aphonia, i.e., who have
lost the ability to vocalize.

In recent years, a variety of deep learning-based meth-
ods have been proposed for video-to-speech, ranging from
simple convolutional architectures [5, 6] to large generative
adversarial networks (GANs) with elaborate training pro-
cedures and loss ensembles [11, 12]. While these meth-
ods have yielded successive improvements on multiple es-
tablished corpora, they primarily suffer from two recurring
limitations: using the Griffin-Lim algorithm [7] to synthe-
size audio from predicted spectrograms, which introduces
noticeable artifacts in the resulting speech, and focusing on
datasets recorded under studio conditions with a small pool
of speakers and a homogeneous vocabulary (e.g., GRID [4]
and TCD-TIMIT [9]).

Aiming to address these shortcoming, we propose a
scalable video-to-speech synthesizer, dubbed SVTS, which
combines a video-to-spectrogram predictor with a pre-
trained neural vocoder that maps spectrograms to wave-
forms. Using a powerful off-the-shelf vocoder allows us to
focus on spectrogram prediction, which we show can be ef-
fectively performed through a scalable ResNet+Conformer
architecture and simple comparative losses. We train and
evaluate on GRID, outperforming previous works on most
metrics, and achieve state-of-the-art performance for LRW
[3]. Furthermore, to the best of our knowledge, we are the
first to produce intelligible speech for LRS3 [1].
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Figure 1. Summary of our video-to-speech synthesis approach
during training and inference. In this figure, the components pic-
tured in blue are pre-trained and kept frozen, while the components
pictured in green are trained from scratch.

2. Methodology

2.1. Video-to-spectrogram

Our spectrogram prediction model receives video sam-
pled at 20 fps as input and outputs the log-mel spec-
trogram of the corresponding speech, which contains 80
frames per second. Each video frame is passed through a
ResNet18+Conformer architecture [8, 10] and is projected
into 4 × 80 spectrogram frames via a linear projection
layer. To capture the speaker’s voice profile, we apply a



Method Corpus (seen/unseen)
Speaker split

(hours)
Training data PESQ STOI ESTOI WER (%)

End-to-end GAN [12] GRID seen 24 1.70 0.667 0.466 4.60
VCA-GAN + Griffin-Lim [11] GRID seen 20 1.97 0.695 0.505 5.13

SVTS-S GRID seen 24 1.97 0.705 0.523 2.36

Conv. + LSTM + Griffin-Lim [13] LRW unseen 157 1.20 0.543 0.344 34.20∗

End-to-end GAN [12] LRW unseen 157 1.33 0.552 0.330 42.60
VCA-GAN + Griffin-Lim [11] LRW unseen 157 1.34 0.565 0.364 37.07

SVTS-M LRW unseen 157 1.49 0.649 0.483 13.40

SVTS-L LRS3 unseen 296 1.25 0.507 0.271 -

SVTS-L VoxCeleb2
LRS3 + unseen 1556 1.26 0.530 0.313 -

Table 1. Summary of our results. ∗reported using Google speech-to-text API.

Model SVTS-S SVTS-M SVTS-L

Num. parameters∗ (M) 27.3 43.1 87.6
Conformer blocks 6 12 12
Attention dim. 256 256 512
Attention heads 4 4 8

Table 2. Summary of our proposed SVTS architectures. ∗refers to
the total number of parameters in the model.

pre-trained speaker encoder1 on a randomly selected speech
clip. We present three versions of our SVTS model in Ta-
ble 2, ranging from 27.3 to 87.6 million parameters. This
model is trained using a combination of the L1 loss and the
spectral convergence loss [17].

2.2. Spectrogram-to-waveform

In order to synthesize waveform audio from log-
mel spectrograms, we apply a recently-proposed neural
vocoder: Parallel WaveGAN [17]. This WaveNet-based
model is trained on a very large speech dataset (LibriTTS
[18]) using a combination of adversarial and comparative
losses. As highlighted in Figure 1, this module is kept
frozen and only used during inference to translate the pre-
dicted spectrograms into waveforms, allowing for a simpler
training procedure.

3. Experiments
3.1. Datasets

In this work, we experiment with three datasets: GRID,
which features a small collection of short sentences ut-
tered by 33 different speakers, recorded in studio condi-
tions; LRW, which has a wider vocabulary of 500 words
and hundreds of different speakers recorded ‘in the wild’

1https://github.com/corentinj/real-time-voice-
cloning

during television broadcasts; and LRS3, which contains
sentences from thousands of speakers recorded during TED
talks, featuring a wide variety of recording conditions, as
well as a vocabulary of more than 50,000 words. Further-
more, we augment LRS3’s training set with additional data
from the English-only version [15] of VoxCeleb2 [2], con-
taining more than 1,500 hours of video.

3.2. Evaluation metrics

To evaluate the quality of our generated speech samples,
we apply four objective metrics: PESQ [14], which mea-
sures the clarity and overall quality of the speech; STOI
and ESTOI [16], which measure intelligibility; and WER
(Word Error Rate), which serves as an easily interpretable
intelligibility metric. This is measured by using a pre-
trained speech recognition model on the real and generated
samples and comparing the resulting transcriptions.

3.3. Results

We present our results in Table 1, and encourage readers
to listen to the samples presented on our project website2.
On GRID, our work achieves state-of-the-art performance
on all metrics, resulting in a very low WER of 2.36 %.
For LRW, which presents a more substantial challenge for
video-to-speech, SVTS-M outperforms all previous works
on all objective metrics by a wide margin, yielding a partic-
ularly impressive improvement on WER.

Finally, we train our largest model SVTS-L on LRS3. To
demonstrate our model’s scalability, we compare two ex-
periments with the same validation and testing sets (from
LRS3): one trained on 296 hours of LRS3 video, and an-
other trained on a combination of the LRS3 training set and
an English-only version of VoxCeleb2, amounting to 1556
hours of data. As shown in Table 1, the addition of the
VoxCeleb2 training data yields a noticeable increase on all
evaluation metrics, demonstrating our method’s scalability.

2https://sites.google.com/view/scalable-vts-nv

https://github.com/corentinj/real-time-voice-cloning
https://github.com/corentinj/real-time-voice-cloning
https://sites.google.com/view/scalable-vts-nv


4. Conclusion
In this work, we present a new video-to-speech approach

which combines a simple spectrogram prediction model
with a pre-trained neural vocoder to reproduce speech di-
rectly from silent lip movements. This straightforward ap-
proach allows us to easily scale to a variety of datasets,
ranging from the small and controlled GRID, to a dataset
containing >1500 hours of unconstrained speech (LRS3 +
Voxceleb2). Through our experiments, we show that our
approach is superior to previous works on both GRID and
LRW, according to four objective speech metrics.
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