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Figure 1. Localizing Sound Sources by Introducing Hard Pos-
itive Samples. Here, two audio-visual pairs from the red box and
blue box are semantically related. When we pair the image of the
red box and the audio of the blue box, which forms the yellow
box, the response maps from the yellow box and the red box local-
ize similar regions.

1. Introduction

During daily events of our lives, we are continuously
exposed to various sensory signals and their interactions
with each other. Because of this continuous stream of in-
formation, human perception has been developed to orga-
nize incoming signals, recognize the semantic information
and understand the relationship between these cross-modal
signals to combine or separate them. Among these sen-
sory signals, inarguably the most dominant ones are vi-
sion and audition. In order to have human-level percep-
tional understanding, modeling proper audio-visual learn-
ing that can associate or separate the audio-visual signals
is essential. Thus, the audio-visual learning is an emerging
research topic with variety of tasks, such as audio-visual
source separation [1, 4–6, 17, 20], audio spatialization [12],
audio-visual video understanding [7, 18, 19] and sound lo-
calization [2, 3, 14, 15].

One of the main challenging problems in audio-visual
learning is to discover a sound source in a visual scene by
taking advantage of the correlation between the visual and
audio signals. A simple way to do this is using sounding
source segmentation masks or bounding boxes as supervi-
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sion. However, obtaining sufficient annotated data is diffi-
cult and costly for audio-visual tasks, where annotation of-
ten requires listening and watching samples. As a result, a
key challenge is proposing unsupervised approaches, with-
out any manual annotation, that can solve this task success-
fully. A widely used self-supervised approach in sound lo-
calization is using the correspondence between the audio
and visual signals by using them as supervision to each
other [2, 13–15]. Additionally, [14, 15] use an attention
mechanism to refine visual features by feature weighting
with sound source probability map. Other models [9] de-
ploy the clustering of audio-visual samples to reveal the
cross-modal relationships and improve the accuracy. While
prior self-supervised works ignore the category informa-
tion, [10] incorporates class-aware object dictionaries and
distribution alignment in a self-supervised way. More re-
cently, in the light of the success of the noise contrastive
learning, [3] introduces a state-of-the-art method that uses a
contrastive learning scheme with hard negative mining from
background regions within an image.

Inarguably, audio-visual correspondence in a video, i.e.
audio and image pairs, is the key assumption in sound local-
ization approaches. Vast amount of audio-visual research
leverage contrastive learning by assigning corresponding
audio-visual pair from the same source as positives while
mismatched pairs, i.e. audio and visual pairs from different
sources, as negatives. One problem of contrastive learn-
ing, when applied with this audio-visual correspondence
assumption, is that the negative pairs may contain seman-
tically matched audio-visual information. For example, if
there are multiple videos with a person playing the violin in
a dataset, every pairwise relation of these videos are seman-
tically correct pairs (Figure 1). However, when contrastive
learning is applied without consideration of semantic infor-
mation contained in videos, a model is falsely guided by
these false negatives, i.e. audio and video from different
sources but containing similar semantic information [8,11].

We mine and incorporate these semantically similar sam-
ples into the training. As a consequence, we can reduce
down the chance of falsely paired audio-visual samples as
negatives during the training. Moreover, since these pairs
are semantically correlated, they can be used as positive
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pairs, i.e. hard positives, in sound localization tasks. For
instance, if the audio samples of two different instances are
semantically related, then the attention maps of those au-
dios paired with the same base image should be similar to
each other as in Figure 1. Note that this observation is valid
when the order of the audio and vision samples in the previ-
ous scenario are swapped as well. We show this simple ap-
proach boosts sound localization performance on standard
benchmarks.

To be clear, we do not propose a new architecture or
a new loss function in this paper, but instead, we pro-
vide a new training mechanism by discovering semantically
matched audio-visual pairs and incorporating them as hard
positives. We make the following contributions: 1) We
demonstrate hard positive audio-visual pairs produce sim-
ilar localization results to that of corresponding pairs. 2)
We mine and incorporate hard positives into the positive set
of contrastive loss. 3) We show that incorporating hard pos-
itives improves the sound localization performance and out-
performs prior works on the standard benchmarks.

2. Approach
Audio-visual attention is commonly used in sound local-

ization studies [3,10,14]. We build the baseline audio-visual
model based on the most recent work LVS [3] and validate
our method on top of the baseline. We first introduce the
audio-visual attention mechanism and the baseline model
named vanilla-LVS, and then introduce our approach.

2.1. Preliminaries
We use an image frame v ∈ R3×Hv×Wv and the corre-

sponding spectrogram a ∈ R1×Ha×Wa of the audio from a
clip X = {v, a}. With the two-stream models, fv(·; θv) for
vision embedding and fa(·; θa) for audio embedding, the
signals are encoded into the features:

V = fv(v; θv), V ∈ Rc×h×w

A = fa(a; θa), A ∈ Rc
(1)

The vision and audio features, Vj and Ai, are fed into
the localization module and audio-visual response map
αij ∈ Rh ×w is computed with cosine similarity as:

[αij ]uv =
⟨Ai, [Vj ]:uv⟩

∥Ai∥ ∥[Vj ]:uv∥
, uv ∈ [h]× [w], (2)

where i and j denote the audio and image sample indices
respectively. Following [3], pseudo-ground-truth mask mij ,
is obtained by thresholding the response map as follows:

mij = σ((αij − ϵ)/τ), (3)

where σ refers to the sigmoid function, ϵ to the thresholding
parameter and τ is the temperature. The inner product be-
tween the mask mij and the response map αij is computed
to emphasize positively correlated regions of the response
map.

2.2. Semantically Similar Sample Mining

Our method is based on the observation that hard posi-
tives make similar localization results to the original pairs.
These additional audio-visual response maps from the hard
positives can be easily incorporated into the contrastive
learning formulation. Semantically related samples in each
modality are mined to form hard positives based on the sim-
ilarity scores in the feature space. To get the reliable repre-
sentations within each modality, we train the baseline model
without tri-map, i.e. hard negative mining introduced in [3].

Given sample i and an arbitrary sample j, we com-
pute the cosine similarity between the features within each
modality, AT

i Aj and VT
i Vj , where Vi is the spatial-wise av-

erage pooled vector of visual the feature map Vi. Sets of
semantically similar items in both modality for the given
sample, PiA and PiV , are constructed based on the com-
puted scores, SiA and SiV . K number of semantically re-
lated samples are retrieved from the sorted similarity scores.
All the samples that are not contained in the aforementioned
sets are considered as negative samples and form a negative
set, Ni :

SiA = {AT
i Aj |1 ≤ j ≤ n},

PiA = {Xt}t∈S[1:K], S = argsort(SiA),

SiV = {VT
i Vj |1 ≤ j ≤ n},

PiV = {Xt}t∈S[1:K], S = argsort(SiV ),

Ni = PiA ∪ PiV .

(4)

2.3. Training

The training objective of our method makes positive pair
responses higher while negative pair responses are reduced.
Since we incorporate responses from hard positives, we ex-
tend the contrastive learning formulation of [3] by adding
each hard positive response. Defining the response map of
the base pairs as Pb, hard positive responses are computed
as follows: Pa is the response of base visual signal and
semantically similar audio, Pv is the response of base au-
dio signal and semantically similar image, finally Pc is the
cross-modal hard positive pair's response. All the responses
from the base audio and negatively correlated image pairs
are considered as the negative responses Ni. Definition of
positive and negative responses are given as:
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Pb =
1

|mii|
⟨mii, αii⟩

Pa =
1

|mji|
⟨mji, αji⟩, j ∈ PiA

Pv =
1

|mik|
⟨mik, αik⟩, k ∈ PiV

Pc =
1

|mjk|
⟨mjk, αjk⟩, j ∈ PiA , k ∈ PiV

Pi = exp(Pb) + exp(Pa) + exp(Pv) + exp(Pc)

Ni =
∑
l∈Ni

exp(
1

hw
⟨1, αil⟩).

(5)

After constructing positive and negative responses, our
model can be optimized by the loss function L as below:

L = − 1

n

n∑
i=1

[
log

Pi

Pi +Ni

]
(6)

VGG-SS Flickr
Method cIoU AUC cIoU AUC

Attention [14]CVPR18 0.185 0.302 0.660 0.558
AVEL [16]ECCV18 0.291 0.348 - -

AVObject [1]ECCV20 0.297 0.357 - -
Vanilla-LVSCVPR21 0.278 0.350 0.692 0.563

LVS [3]†CVPR21 0.303 0.364 0.724 0.578
Random HP 0.207 0.314 0.572 0.528

Ours 0.346 0.380 0.768 0.592

Table 1. Quantitative results on the VGG-SS and SoundNet-
Flickr test sets. All models are trained with 144K samples from
VGG-Sound and tested on VGG-SS and SoundNet-Flickr. † is the
result of the model released on the official project page and the
authors report 3% drop in cIoU performance comparing to their
paper.

3. Experiments
3.1. Quantitative Results

In this section, we compare our results with existing
sound localization approaches on VGG-SS and SoundNet-
Flickr-Test datasets. We recall that our model is based on
vanilla-LVS trained with semantically similar sample min-
ing. In Table 1, we show the performance of the pro-
posed model together with several prior works on VGG-
SS and SoundNet-Flickr-Test datasets by following [3].
The comparison methods here are trained with the same
amount of training data, 144K, as in [3]. AVEL [16] and
AVObject [1] models are based on video input. Thus,
the SoundNet-Flickr dataset, which contains static image

Method cIoU AUC

Attention [14]CVPR18 0.660 0.558
Vanilla-LVSCVPR21 0.704 0.581
LVS [3]†CVPR21 0.672 0.562
Ours 0.752 0.597

Table 2. Quantitative results on the SoundNet-Flickr test set.
All models are trained and tested on the SoundNet-Flickr dataset.
† is the result of the model from the official project page.

and audio pairs, can not be evaluated. The proposed
model achieves significantly higher performance on both
the VGG-SS and SoundNet-Flickr-Test datasets than the
other existing works including LVS. This shows that inter-
sample relation across-modality is more important than the
intra-sample relation.

Next, we compare the performance on the SoundNet-
Flickr-Test set by training our method separately with 144K
samples from SoundNet-Flickr. As shown in Table 2, the
proposed model gives the highest performance in this com-
parison. As [3] reports, our method also achieves higher
accuracy on this test set when it is trained with VGGSound.

3.2. Qualitative Results

We provide our sound localization results on VGG-SS
and SoundNet-Flickr test samples in Figure 2 and compare
them with LVS [3]. Our results present more accurate re-
sponse maps in comparison to the competing approach. Ad-
ditionally, we demonstrate attention maps of the hard pos-
itives. The left part of the Figure 3 visualizes the scenario
where hard positive is obtained with the visual signal. Here,
the original audio is paired with the semantically related im-
age. Similarly, the right part of the Figure 3 depicts that
the hard positive is obtained with the audio signal. Results
show that in both scenarios, response maps of the hard pos-
itives are very similar to the response maps of the original
pairs, attoriginal. As expected, response maps of the neg-
ative samples, attneg , are inaccurate since those instances
are not correspondent.

4. Conclusion

In this paper, we address the problem of self-supervised
sound source localization in contrastive learning formula-
tion. We identify a source of noise due to the random
negative sampling, where semantically correlated pairs are
contained among negative samples. We suggest a sim-
ple positive mining approach and employ these hard pos-
itives into training. We validate our method on standard
benchmarks showing state-of-the-art performance. The pro-
posed method is applicable to any type of model using
contrastive loss, therefore audio-visual learning studies can
benefit from our work.
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Figure 2. Sound localization results on VGG-SS and SoundNet-Flickr and comparison with LVS [3].

Figure 3. Response maps of hard positives. Left refers to the scenario that the hard positive is obtained with the visual signal. Right
shows the hard positive pair which is obtained with the audio signal. In both cases, the response maps of hard positives resemble the
original pair response maps.
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