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1. Introduction

Online media is brimming with user generated videos
involving human voice activity in the form of speech and
singing voice. A large number of these videos suffer from
misalignment between the audio and visual streams aris-
ing due to the lack of appropriate care during video edit-
ing. As a result of this misalignment, the video view-
ers notice that the lip motion is not perfectly synchronised
with the voice in the audio. Lip-voice synchronisation in
such videos could be corrected by compensating the off-
set between the audio and visual modalities, which is ren-
dering the video out-of-sync. A commonly used method
to determine this offset is by training a model to tell lip-
synchronised audio-visual pairs from the non-synchronised
pairs and then choose the alignment between the audio
and visual signals in the non-synchronised pairs that max-
imises the synchronisation score. We train our model to dis-
criminate between synchronised and unsynchronised audio-
visual pairs by learning their mutual audio-visual corre-
spondence in a self-supervised fashion.

We make several contributions through this paper. We
propose a novel audio-visual transformer-based lip-voice
synchronisation model that estimates the extent of synchro-
nisation between the lips motion and the voice in a given
voice video. Our lip synchronisation model outperforms
state-of-the-art models on the speech benchmark dataset Lip
Reading Sentences 2 (LRS2) [1]. Besides, we also train
and test our lip synchronisation models on the Acappella [8]
dataset which contains videos of solo singing performances.
We are the first to explore the relevance of lip sync models
trained in speech videos to lip sync in singing voice. We use
the learned visual features in the lip synchronisation task to
outperform a singing voice separation baseline to showcase
the practical utility value of our work. Demos are available
athttps://ipcv.github.io/VocaLisST.

2. Related Work

With the advent of deep learning techniques, different
models have addressed the synchronisation of audio-visual
signals in a self-supervised way, by automatically creating
positive and negative audio-visual sync/out-of-sync pairs.
While some works focus on synchronisation in general
sounds [I1, 2], others are specialised in speech signals
[4, 3, 5]. The common trend is to extract features from each
modality with an audio and a visual stream and then mea-
sure similarity/distance between the two embeddings using
a sliding window to infer the offset of synchronisation. The
first deep-learning-based model for audio-visual synchro-

nisation in speech [3] uses a contrastive loss with a posi-
tive and a negative pair. The use of N negative pairs in a
multi-way cross-entropy loss with softmax function [4] fur-
ther improved the performance of the same model. Unlike
these works, [5] directly train the model to determine the
offset in the audio-visual pairs.

Transformers have emerged as powerful deep learning
architectures capable of capturing long range dependencies
in time series. Lately, transformers have been explored for
several audio-visual tasks such as source separation [ 15, 9],
source localisation [6] and speech recognition [7], includ-
ing synchronisation [2]. Our work in this paper is closest to
Audio-Visual Synchronisation with Transformers (AVST)
[2]. At high-level, both models share the same outline as
shown in the left part of Fig. 1. However, the overall archi-
tecture of our model is different with regard to the choice
of audio and visual encoders and the design of the syn-
chronisation block. The details of our model architecture
are clearly outlined in Section 3.1. Besides, [2] use the In-
foNCE [10] loss for optimising their model, we use binary
cross entropy loss. The main focus in [2] is audio-visual
synchronisation in general audio classes, while we focus on
lip-synchronisation in speech and singing voice videos only.
Finally, unlike in [2], we demonstrate a real-world applica-
tion of the learned features of our synchronisation model.

3. Method

Architecture. The architecture of our model is shown
in Fig. 1. We use a transformer-based classification model
which ingests audio and visual features estimated by the au-
dio and visual encoders.

We design a powerful cross-modal audio-visual trans-
former that can use the audio-visual representations learned
in its cross-modal attention modules to deduce the inherent
audio-visual correspondence in a synchronised voice and
lips motion pair. We refer to our transformer model as Vo-
caLiST, the Vocal Lip Sync Transformer. Its design is in-
spired by the cross-modal transformer from [16]. The cross-
modal attention blocks track correlations between signals
across modalities. The A—V unit takes in audio features as
the query and the visual features as the key and values. The
roles of these audio and visual features are swapped in the
V—A unit. The output of the A—V unit forms the query to
the hybrid fusion transformer unit, while its key and values
are sourced from the output of the V—A unit.

Training Setup. We train our model for estimating the
audio-visual correspondence score for a given audio-visual
pair in an end-to-end manner. The positive examples cor-
respond to the synchronised pairs in which the audio cor-
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Figure 1. Architecture of our lip synchronisation model.

responds to the visual. The negative examples are obtained
by introducing random temporal misalignment between the
in-sync audio-visual pairs. This allows us to follow a self-
supervised training pipeline. During the training, the pos-
itive and the negative examples are sampled equally. The
audio-visual correspondence score needs to be maximised
for the positive examples and minimised for the negative
examples. The binary cross-entropy loss criterion is used to
optimise the model parameters during the training. Unless
stated otherwise, we train our model with audio-visual in-
put corresponding to a sequence length of 5 visual frames
(0.25) sampled at 25 fps.

4. Experiments

In this section, we investigate the lip synchronisation in
two different settings: speech and singing voice. Further,
we show the usefulness of the lip synchronisation models
for a practical audio-visual application.

4.1. Lip Synchronisation in Speech

Dataset. For the task of lip synchronisation in speech
videos, we consider the LRS2 [1] dataset as in the baseline
methods SyncNet [3], Perfect Match (PM) [4] and AVST
[2]. This allows us to directly compare our method against
these baselines. As in the baseline methods, we train our
model on the ‘pretrain’ subset of LRS2 and evaluate on the
‘test’ subset.

Evaluation protocol. For a fair comparison, we mimic
the evaluation protocol followed by the baseline methods.
Given a sequence of cropped mouth frames and the mel-
spectrograms, our model is tasked with predicting the cor-

rect synchronisation in the given pair of inputs. Human ob-
servers cannot tell unsynchronised speech videos from the
synchronised ones when the temporal offset is in the +1
frame range. Hence, for a synchronised pair of speech audio
and lips motion inputs, the synchronisation is estimated to
be correct if the predicted offset between the pair is within
4+ 1 frame range. As in the baseline models, we estimate
this offset by finding the index of maximum audio-visual
correspondence between the set of 5-frame visual features
and all the audio feature sets (each temporally matching the
length of 5 visual frames) lying in +15 frame range.

Though we mainly train our model on audio-visual in-

put pairs corresponding to the length of 5 visual frames,
the model can be tested on inputs of larger lengths. This
is particularly useful when a set of 5 visual frames is non-
informative (e.g. silence in speech). To evaluate on inputs
of larger context window, the audio-visual correspondence
score is obtained for each possible 5-frame set within the
evaluation window (with a temporal stride of 1 frame) and
then averaged before determining the offset. This averag-
ing has been shown to improve the accuracy in the baseline
models. On the other hand, [2] showed that training mod-
els for specific context window sizes (other than 5) leads to
better performance than the previous averaging strategy in
the same context window.
Results and discussion. Table 1 shows a direct comparison
of the lip synchronisation accuracy of our model against the
baseline models on the LRS?2 test set. The accuracy is com-
puted for multiple context windows ranging from sizes of 5
to 15. The accuracy improves across all the models as we
increase the context window size while the rate of improve-
ment reduces.

For each of the context window sizes, our model outper-
forms all the listed baseline models on the LRS2 test set.
This improved performance can be attributed to the pow-
erful cross-modal transformer blocks in our model in com-
bination with our 3D-CNN based visual encoder. We tried
reducing the complexity of our model by eliminating up to
2 cross-modal transformer blocks and also by replacing our
visual encoder with the 18-layered Mixed Convolution net-
work [14]. These changes resulted in poorer performance.

4.2. Lip Synchronisation in Singing Voice

Dataset. We use Acappella [8], the only publicly avail-
able audio-visual singing voice dataset. It consists of
around 46-hours of solo-singing videos spanning four lan-
guage categories. We test on the unseen-unheard test subset
of the dataset which contains 83 song performances evenly
distributed across each of the language categories and the
genders. All the videos in the Acappella dataset have been
manually curated from YouTube with care taken to ensure
that the samples appear synchronised to human visual ob-
servation. On the other hand, in LRS2, an automatic method



was used to better synchronise the audio-visual signal pairs.

Models. We consider two models for the singing voice lip
synchronisation: a baseline model and our VocaLiST. In-
stead of selecting SyncNet [3] as the baseline model, we
choose the Lip Sync Expert Discriminator [12]. We refer to
this new baseline model as SyncNet*. SyncNet* improves
upon its predecessor SyncNet in the following ways: Unlike
in SyncNet, i) SyncNet* operates on the RGB images, ii)
the model is significantly deeper than the former with resid-
ual skip connections, and iii) the model is optimised using
a cosine-similarity distance metric in combination with bi-
nary cross-entropy loss. We train both VocaLiST and Sync-
Net* on Acappella training set in an end-to-end manner.

Evaluation protocol. Unlike in speech videos, it is difficult
for humans to notice out-of-sync in videos belonging to the
general sound categories [2] when the offset between the
modalities is less than 5. Singing voice also falls in such
general sound category. The presence of sustained vowel
sounds in singing voice, makes it difficult to notice synchro-
nisation errors for the offsets less than 5. Thus, we consider
synchronisation to be correctly estimated if the model pre-
dicts the maximum audio-visual correspondence within 45
frame range with respect to the ground truth. Unlike in [2],
we do not decode the videos in lower frame rate for evalua-
tion in singing voice.

Results and discussion. We show the results in Table 2.
Firstly, we test the models trained on the speech dataset
LRS2 directly on the singing voice samples. Among the
baseline models discussed in Table 1, only the SyncNet
model is publicly available. The Var column indicates if the
results on larger context windows are obtained by the model
trained with the exact length of the context window as the
ones used for testing. Several observations arise from the
results. First, the synchronisation accuracy in singing voice
is lower than in the case of speech, even with a larger toler-
ance, showing that singing voice synchronisation is a harder
task. Also, the increase of the context window size supposes
a larger improvement, compared to the speech case. The
best results are achieved with a dedicated network trained
for 1s-length window. It can be noticed how our model
trained for speech synchronisation generalises quite well for
the singing voice with large enough context window sizes.
We hypothesise that with larger contexts it is more probable
to find portions of singing voice excerpt with non-sustained
vowels, or consonants, producing audio-visual cues more
similar to the ones found in speech. The LRS2 ‘pretrain’
subset that we use for training spans around 195 hours,
while the training set of Acappella totals up to less than 37
hours of videos. Hence, compared to LRS2, Acappella is a
small dataset. Therefore, the models trained on LRS2 tend
to perform better in Acappella than the other way round.

4.3. Singing Voice Separation

We would like to demonstrate the effectiveness of the
features learned by the visual encoder of our synchronisa-
tion network by using them in the singing voice separation
task. We use the Acappella dataset [8].

Training. We use the same training pipeline that is used for
training the model Y-Net-mr in [8]. Y-Net-mr is a U-Net
[13] conditioned by visual features extracted from cropped
mouth frames using an 18-layer mixed convolution network
[14]. Y-Net-mr estimates the complex masks corresponding
to a voice present in an audio mixture when given with a
spectrogram of an audio mixture and the temporal sequence
of the cropped mouth frames corresponding to the target
voice as input. During training, half of the input audio mix-
tures contain one voice mixed with a musical accompani-
ment, while the other half contains an additional voice be-
sides the accompaniment.

Models. The main baseline models here are Y-Net-gr and
Y-Net-mr from [8] which are trained end-to-end for singing
voice separation. Y-Net-mr is a state-of-the-art audio-visual
singing voice separation model among the models that oper-
ate directly on the cropped mouth frames (Y-Net-gr instead
works with face landmarks). To investigate the contribution
of the features learned by our lip synchronisation model, we
propose Y-Net-mr-V. Y-Net-mr-V is nothing but a Y-Net-mr
with its visual encoder replaced with that of our lip synchro-
nisation model. In one setting, we train the Y-Net-mr-V for
singing voice separation by loading the pretrained weights
of the visual encoder which was trained as a part of Vo-
caLiST for singing voice lip synchronisation and keep them
frozen throughout the training. In another setting, we train
the entire model Y-Net-mr-V in an end-to-end manner with-
out using the pretrained weights learned from the lip syn-
chronisation task. Finally, we also consider Y-Net-mr-S*,
which is a Y-Net-mr with its visual encoder replaced by that
of the SyncNet* [12]. For Y-Net-mr-S*, we only consider
the setting where the pretrained visual encoder weights cor-
responding to the singing voice lip synchronisation task are
loaded from the SyncNet* and frozen as we train the rest of
Y-Net-mr-S* for singing voice separation.

Evaluation. We evaluate the singing voice separation
performance by evaluating the source separation met-
rics [17] Source-to-Distortion Ratio (SDR) and Source-to-
Interference Ratio (SIR) on the estimated target voices. The
higher these metrics are, the better the performance.
Results and Discussion. Table 3 shows the performance of
the models in singing voice separation. Our model Y-Net-
mr-V outperforms Y-Net-mr when we use the pretrained
weights from the lip synchronisation task for the visual en-
coder. It is challenging to train a source separation network
that operates directly with video frames when the dataset
is small, which is the case of Acappella. There is a ten-
dency of over-fitting in such small datasets. Under such cir-



Table 1. Accuracy of lip synchronisation models in LRS2

Clip Length in frames (seconds)
Models | # params =55 =G 585) p9 (0.3gss) 11 (0.44s) | 13 (0.525) | 15 (0.65)
SyncNet [3] | 13.6M | 75.8 823 876 918 945 96.1
PM [4] 13.6M | 88.1 93.8 96.4 97.9 987 99.1
AVST[2] | 424M | 920 95.5 97.7 98.8 993 99.6
VocaliST | 80.IM | 92.8 96.7 98.4 99.3 99.6 99.8
(M = million)

cumstances, knowledge transfer from the audio-visual syn-
chronisation could guide the source separation despite the
dataset size limitations. To further highlight the importance
of this knowledge transfer, we also train the Y-Net-mr-V
end to end without using the pretrained synhronisation vi-
sual features. In this case, the model does not generalise
well to the test-unseen subset despite having 38M trainable
parameters. Note that even Y-Net-mr-S* outperforms Y-
Net-mr here. But since SyncNet* didn’t perform as good
as the VocaLisT in lip synchronisation task (see Table 2),
as we expected, Y-Net-mr-S* did not outperform Y-Net-
mr-V trained with knowledge transfer. Finally, Y-Net-mr-
V achieves comparable results to the state-of-the-art model,
Y-Net-gr: The metrics of Y-Net-mr-V are not statistically
significant w.r.t. the results of Y-Net-gr (p > 0.05).

Table 2. Accuracy of lip synchronisation in Acappella dataset

. Clip Length in frames (seconds)

Models | Var | Trained on 555750 45) [ 15 (0.65) | 20 (0.85) | 25 (Is)
SyncNet* | N | Acappella 57.7 63.9 69.9 75.1 8.7
SyncNet* | Y | Acappella 577 65.9 — — 73.6
VocaLiST | N LRS2 56.7 65.1 722 772 81.2
VocaLiST | N | Acappella 58.8 65.4 71.6 76.5 80.5
VocaLiST | Y | Acappella 58.8 66.4 — — 85.2

5. Conclusions

This paper presents VocaliST, a transformer-based
model for voice-lip synchronisation. The model has been
analysed both in speech and singing voice, producing state-
of-the-art results. We have shown that it learns powerful
visual features that are useful for solving the problem of
singing voice separation in a mixture with more than one
voice. It could perform even better for larger input contexts
if we have dedicated models trained for each specific length
of the input, as shown in Table 2 and also in [2].

Table 3. Performance metrics for Singing Voice Separation. Only
the results that are not statistically significant w.r.t. the results of
Y-Net-gr (p > 0.05) are dotted.

. Source Separation Metrics
Architecture Method SDR SIR
Y-Net-gr [8] E2E 6.41 17.38
Y-Net-mr [8] E2E 5.03 15.80
Y-Net-mr-V E2E 1.14 11.72
Y-Net-mr-S* | PT - SyncNet* 5.44 16.17
Y-Net-mr-V | PT - VocaLiST 6.32 17.08
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