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Abstract

We present a novel approach for learning multi-modal
representation from unlabeled video data. In particular, we
propose: 1) a multi-modal, modality agnostic fusion trans-
former that learns to exchange information between multiple
modalities, such as video, audio, and text, and integrates
them into a joint multi-modal representation; 2) a new com-
binatorial loss to train the system on everything at once,
single modalities as well as any combination of modalities.
The proposed approach is evaluated on four challenging
benchmark datasets and obtains state-of-the-art results in
zero-shot video retrieval and step action localization. Our
code for this work is also available.1

1. Introduction & Related Work
Information of co-occurrence of inputs from different

modalities can be leveraged to learn meaningful represen-
tation of its content [1–3, 5–7, 11, 12, 15, 16, 21, 22]. Re-
cently Miech et al. [16] used contrastive learning to train
a multi-modal text-video embedding space from a large-
scaled HowTo100M dataset of instructional videos in a self-
supervised fashion where text description is obtained by
an automated speech recognition system. Current meth-
ods [1, 4, 9, 10, 14–16, 21, 22] learn modality-specific encod-
ings by projecting inputs to a common space and comparing
representations of different modalities with each other by
pairwise contrastive losses. Approaches that create different
embedding space for different modality combinations [2], or
learn a fused representation of several modalities (such as
video-audio [11, 17, 19]), or train modality-agnostic projec-
tion [1] have also been studied. However, we believe that
so far, cross-modal information has not been fully utilized
during training, and none of these methods allows to obtain a
joint representation of any given number of input modalities.

Our work aims to fill this gap and thus presents an ap-
proach that leverages self-attention for multi-modal learning
to process any number of modalities jointly allowing modal-
ities to attend to each other. As shown in Figure 1, input

1https://github.com/ninatu/everything at once

tokens from one or more modalities are passed through a
modality-agnostic fusion transformer attending relevant fea-
tures for the combined input. The model is trained with
a novel combinatorial loss that considers contrastive loss
between all possible and available modality combinations.
As a result, our model can fuse any combination of input
modalities and project it into a common embedding space
incorporating cross-modality information and enabling such
tasks as cross-modal retrieval and action localization. The
proposed method allows us to improve performance on four
challenging benchmark datasets.

2. Method
Problem Statement. Our goal is to learn a projection func-
tion of single modalities or a set of modalities into the joint
embedding space in a way that semantically similar inputs
would be close to each other. We consider three modalities:
video v, audio a, and text t, but the proposed method can be
easily extended to more modalities. More formally, given a
set of text-video-audio triplets {(ti, vi, ai)}Ni=1 of N video
clips we are learning a projection f(·, ·, ·) that takes up to
three modalities: v, a, and t, and produces d−dimensional
embedding representation of the input.
Token Creation. As illustrated in Figure 1, our architecture
starts from token extraction using modality-specific back-
bones, projection and normalization layers.
Multi-modal Fusion Transformer. To learn a projection
f that can fuse information from multiple modalities to en-
hance the joint representation, we propose a multi-modal,
modality agnostic transformer, where the keys, queries, and
values of the input tokens are computed independently from
the modality. We adopt a regular transformer blocks [23];
but note, the difference compared to other methods is not
in the architecture itself, but in the way it is trained to fuse
any combination of input modalities. We train the system
with a combinatorial input. Namely, we apply it to joint sets
of input tokens from all possible combinations of modali-
ties: singles - a, v, t, and pairs - (a, v), (a, t), (t, v), allow-
ing tokens from one modality to attend tokens from other
modalities. Therefore, we apply it six times to obtain six
representations, such as the combination (v, a) will result in
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Figure 1. The proposed method. During training, we apply the model six times to obtain six embeddings corresponding to text, video, audio,
text-video, text-audio, and video-audio modalities to compute the combinatorial loss, we exemplary consider the audio-video pair marked
with green rectangles here. LN – normalization layer [8]

a fused representation of va.
Projection to Shared Embedding Space. As an example
of one of six embeddings, we consider creating the final
representation for va. Since modalities, even enhanced with
other modalities, are still very different, we divide output
tokens into groups based on modality (v and a in the consid-
ered case) and average them. Then we project embeddings
into the shared embedding space by the modality-specific
projections and average embeddings for v and a to get a final
representation of va.
Combinatorial Loss. Unlike other methods [1, 2, 10, 22]
that apply contrastive losses only between single-modalities,
we force tokens to exchange information between modalities
by enabling contrastive losses with fused modalities as well
using our combinatorial loss: L = λt vLt v + λv aLv a +
λt aLt a+λt vaLt va+λv taLv ta+λa tvLa tv , where λx y

denotes a weighting coefficient and Lx y denotes contrastive
loss between (x, y). For Lx y, we use NCE [18] with tem-
perature τ and batch size B:
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that pushes embeddings xi and yi (for modalities x and y)
of the same clip together and pushes them apart to other
examples in a minibatch.

3. Experimental Evaluation
To ensure comparability, we follow the setup of most

previous works [2, 4, 9, 10, 16, 22] wherever possible (8-sec
training clips, backbones, gating projections, etc.). For the
sake of space, we excluded comparison with methods that
use much stronger backbones.
Tasks & Datasets Following previous works [4, 10, 16, 22]
we train our model on the HowTo100M dataset [16] and eval-
uate it in zero-shot text-to-video retrieval on MSR-VTT [24]
and YouCook2 [25] datasets and zero-shot step action local-
ization on CrossTask [27] and Mining YouTube [13] datasets

Method Visual YouCook2 MSR-VTT
Backbone R@10↑ MedR↓ R@10↑ MedR↓

t → v

ActBERT [26] Res3D+F.R-CNN 38.0 19 33.1 36
Support Set [20] R152 + R(2+1)D-34 - - 31.1 31
HT100M [16] R152 + RX101 24.8 46 29.6 38
NoiseEstim. [4] R152 + RX101 - - 30.4 36
Ours R152 + RX101 38.9 19 35.3 25

t → va

MMT [11] 7 experts - - - 66
AVLNet [22] R152+RX101 44.3 16 27.4 47
MCN [10] R152+RX101 45.2 - 33.8 -
Ours R152+RX101 51.3 10 31.8 30

Table 1. Zero-shot text-to-video retrieval on YouCook2/MSR-VTT.

Tr. Tr. BB Visual Recall↑
Method Mod. v Backbone CrossTask MYT

CrossTask [27] tv R152 + I3D 31.6 -
HT100M [16] tv R152 + RX101 33.6 15.0
MIL-NCE [15] tv ✓ I3D 36.4 -

MCN [10] tva R152 + RX101 35.1 18.1
Ours tva R152 + RX101 39.3 19.4

Table 2. Zero-shot action localization. Tr Mod=Training Modali-
ties, Tr BB v= Trainable Backbone for video modality.

(we follow the inference procedure in [27]). We use fused
va representation for video.
Results. In zero-shot text-to-video retrieval (Table 1), our
method achieves state-of-the-art results over all baselines
on YouCook2, particularly, significantly outperforming the
AVLnet [22] and MCN [10] that also train with three modal-
ities and use the same backbones. For MSR-VTT however,
a fusion of video and audio modalities is not so beneficial
and best performance is reached when considering only text
to video retrieval and leaving out audio information. We
attribute this behaviour to the domain shift as audio of the
HowTo100M mainly contains speech and text as a transcrip-
tion of speech, while in MSR-VTT audio can be much less re-
lated to the textual description. In zero-shot step action local-
ization (Table 2) the proposed approach clearly outperforms
the directly comparable MCN approach on both datasets, as
well as HT100M [16] and MIL-NCE [15] with a trainable
I3D backbone [15] and a fully supervised CrossTask [27].



4. Conclusion
In this work, we proposed the multi-modal, modality

agnostic transformer that learns to fuse information from
multiple modalities and integrates it into a joint multi-modal
representation. We showed that training the system with the
combinatorial loss on any possible combinations of modal-
ities allows the fusion transformer to learn a strong multi-
modal embedding space and achieve state-of-the-art results
in zero-shot video retrieval and zero-shot step action local-
ization.

References
[1] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang,

Shih-Fu Chang, Yin Cui, and Boqing Gong. Vatt: Transform-
ers for multimodal self-supervised learning from raw video,
audio and text. arXiv preprint arXiv:2104.11178, 2021. 1, 2

[2] Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider,
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