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Abstract

We present Dance2Music-GAN (D2M-GAN), a novel ad-
versarial multi-modal framework that generates complex
musical samples conditioned on dance videos. Our pro-
posed framework takes dance video frames and human body
motions as input, and learns to generate music samples that
plausibly accompany the corresponding input. Unlike most
existing conditional music generation works that generate
specific types of mono-instrumental sounds using symbolic
audio representations (e.g., MIDI), and that heavily rely
on pre-defined musical synthesizers, in this work we gen-
erate dance music in complex styles (e.g., pop, breakdanc-
ing, etc.) by employing a Vector Quantized (VQ) audio
representation, and leverage both its generality and high
abstraction capacity of its symbolic and continuous coun-
terparts. By performing an extensive set of experiments
on multiple datasets, and following a comprehensive eval-
uation protocol, we assess the generative qualities of our
proposal against alternatives. The attained quantitative
results, which measure the music quality and consistency,
beats correspondence, and music diversity, clearly demon-
strate the effectiveness of our proposed method.1

1. Introduction

Although seemingly intuitive, music generation from
dance videos has been a challenging task compared to its
counterpart in the inverse direction (i.e., dance generation
from music) due to two main reasons. First, typical audio
music signals are high-dimensional and require sophisti-
cated temporal correlations for overall coherence [2, 10].
For example, CD-quality audio has a typical sampling rate
of 44.1 kHz, resulting in over 2.5 million data points (“di-
mensions”) for a one-minute musical piece [3]. In con-
trast, most dance generation works output the relatively

1See samples at https://l-yezhu.github.io/D2M-GAN/

low-dimensional motion data in the form of 2D or 3D skele-
ton keypoint (e.g., displacement for dozens of joints) condi-
tioned on the music [13,14,20,22], which are then rendered
into dance sequences and videos. To tackle the challenge of
the high dimensionality of audio data, the research studies
on music generation from visual input [7, 8, 23] often rely
on the low-dimensional intermediate symbolic audio repre-
sentations (e.g., 1D piano-roll or 2D MIDI). The symbolic
representations benefit existing learning frameworks with a
more explicit audio-visual correlation mapping and more
stable training, as well as widely-established music synthe-
sizers for decoding the intermediate representations. How-
ever, such symbolic-based works suffer from the limitations
on the flexibility of the generated music, which brings us
to the second challenge of dance video conditioned music
generation. Specifically, a separately trained model is usu-
ally required for each instrument and the generated music is
composed with acoustic sounds from a single predefined in-
strument [5, 7, 17]. Consequently, the typical resulting mu-
sic is simple and lacks harmony and richness for accompa-
nying real-world dance videos (e.g., you can watch a person
dancing hip-hop with such piano-based generated samples
in our supplementary videos). These facts make existing
conditional music generation works difficult to generalize
in complex musical styles and real-world scenarios.

To fill this gap, we propose a novel adversarial multi-
modal framework that learns to generate complex musical
samples from dance videos via the Vector Quantized audio
representations. Inspired by the recent successes of VQ-
VAE [3, 16, 19] and VQ-GAN [6], we adopt quantized vec-
tors as our intermediate audio representation, and leverage
both their increased abstraction ability compared to contin-
uous raw audio signals, as well as their flexibility of better
representing complex real-world music compared to classic
symbolic representations. Specifically, our framework takes
the visual frames and dance motions as input (Figure ??),
which are encoded and fused to generate the correspond-



ing audio VQ representations. After a lookup process of the
generated VQ representations in a learned “codebook”, the
retrieved codebook entries are decoded back to the raw au-
dio domains using a fine-tuned decoder from JukeBox [3].
Additionally, we deploy a convolution-based backbone and
follow a hierarchical structure with two separate abstrac-
tion levels (i.e., different hop-lengths) for the audio sig-
nals. The higher-level model has a larger hop-length and
fewer parameters, resulting in faster inference. In contrast,
the lower-level model has a lower abstraction level with
smaller hop-length, which enables the generation of music
with higher fidelity and better quality.

2. Method
An overview of the architecture of the proposed D2M-

GAN is shown in Figure 1. Our approach entails a hierar-
chical structure with two levels of models that are indepen-
dently trained with a similar pipeline. For each level, the
model consists of four modules: the motion module, the vi-
sual module, the VQ module consisting of a VQ generator
and the multi-scale discriminators, and the music synthe-
sizer. Our hierarchical structure amplifies the flexibility to
choose between the trade-off of the music quality and com-
putational costs according to practical application scenar-
ios. A detailed description of these modules is given be-
low while further architectural details and model-selection-
tuning are included in the supplementary.

2.1. Generator

The generator G = {Gm, Gv, Gvq} includes the mo-
tion module Gm, the visual module Gv , and the principal
VQ generator Gvq in the VQ module, which takes the fused
motion-visual data as input and outputs the desired VQ au-
dio representations.

fvq = Gvq(Gm(xm), Gv(xv)) = G(xm, xv), (1)

where xm and xv represent the motion and visual input
data, respectively. fvq is the output VQ representations. All
these modules are implemented as convolution-based feed-
forward networks. For the principal VQ generator, we use
leaky rectified activation functions [26] for its hidden lay-
ers and a tanh activation for its last layer before output to
promote the stability of GAN-based training [18].

It is also worth noting that we find that using batch nor-
malization and the aforementioned activation function de-
signs [15,18,21] is crucial for a stable GAN training in our
framework. However, the application of the tanh activation
will also restrict the output VQ representations within the
data range between −1 and +1. We choose to scale ac-
tivation after the last tanh activation by multiplying by a
factor σ. The hyper-parameter σ enlarges the data range
of VQ output and makes it possible to perform the lookup

of pre-learned large-scale codebooks LookUp(f ′
vq) with

f ′
vq = σfvq. Another significant observation regarding the

generator’s design is using a wide receptive field. Music has
long temporal dependencies and correlations compared to
images, therefore, the principal VQ generator with a larger
receptive field is beneficial for generating music samples
with better quality, which is consistent with the findings
from previous works [4, 12]. To this end, we design our
generator with relatively large kernel sizes in the convolu-
tional layers, and we also add residual blocks with dilations
after the convolutional layers. All previously described sub-
modules within our generator G are jointly optimized.

2.2. Multi-Scale Discriminator

Similar to the generator, the discriminator in the D2M-
GAN is also expected to capture the long-term dependencies
of musical signals encoded in the generated sequence of VQ
features. However, different from the generator design that
focuses on increasing the receptive fields of the neural net-
works, we address this problem in the discriminator design
by using a multi-scale architecture. The multi-scale dis-
criminator design has been studied in previous works within
the field of audio synthesis and generation [11, 12, 25].

The discriminator D = {D1, D2, D3} in the VQ mod-
ule of our D2M-GAN is composed of 3 discriminators that
operate on the sequence of generated VQ representations
and its downsampled features by a factor of 2 and 4, re-
spectively. Specifically, different from the multi-scale dis-
criminators proposed in previous works that directly take
the raw audio as input, we reshape the VQ representa-
tions f ′

vq along the temporal dimension before feeding them
into the discriminators, which is also important for D2M-
GAN to reach a stable adversarial training since music is
a temporal audio sequence. Finally, we use the window-
based objectives [12] (Markovian window-based discrimi-
nator analog to image patches in [9]). Instead of learning to
distinguish the distributions between two entire sequences,
window-based objective learns to classify between distribu-
tions of small chunks of VQ sequences to further enhance
the overall coherence.

3. Experiments
3.1. Experimental Setup

Datasets. We validate the effectiveness of our method by
conducting experiments on the AIST++ [14] dataset. The
AIST++ dataset [14] is a subset of AIST dataset [24]
with 3D motion annotations. We adopt the official cross-
modality data splits for training, validation, and testing,
where the videos are divided without overlapping musical
pieces between the training and the validation/testing sets.
The number of videos in each split is 980, 20, and 20, re-
spectively. The videos from this dataset are filmed in pro-
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Figure 1. Overview of the proposed architecture of the D2M-GAN. Our model takes the motion and visual data from the dance videos as
input and process them with the motion and visual modules, respectively. It then forwards the fused representation containing information
from both modalities to ground the generation of audio VQ-based representations with the VQ module. The resulting features are calibrated
by a multi-scale GAN-based discriminator and are used to perform a lookup in the pre-learned codebook. Last, the retrieved codebook
entries are decoded to raw musical samples via by a pre-trained and fine-tuned decoder, responsible for synthesizing music.

Category Features Type Metric Methods Scores

Dance-Music Rhythm Obj.
Beats Coverage

&
Beats Hit

Dance2Music [1] 83.5 & 82.4
Foley Music [7] 74.1 & 69.4
Ours High-level 88.2 & 84.7
Ours Low-level 92.3 & 91.7

Dance-Music Genre & Diversity Obj. Genre Accuracy

Dance2Music [1] 7.0
Foley Music [7] 8.1
Ours High-level 24.4
Ours Low-level 26.7

Dance-Music Coherence Subj. Mean Opinion Scores

Random JukeBox [3] 2.1
Dance2Music [1] 2.9
Foley Music [7] 2.8
Ours High-level 3.5
Ours Low-level 3.4

GT 4.4

Music Overall quality Subj. Mean Opinion Scores

JukeBox [3] 3.4
Ours High-level 3.1
Ours Low-level 3.7

GT 4.8

Table 1. Evaluation protocol and the corresponding results for the experiments on the AIST++ dataset [14]. Obj. stands for Objective,
which means the scores are automatically calculated. Subj. stands for Subjective, which means the scores are given by human evaluators.



fessional studios with clean backgrounds. There are in total
10 different dance genres and corresponding music styles,
which include breakdancing, pop, lock and etc. The number
of total songs is 60, with 6 songs for each type of music. We
use this dataset for the main experiments and evaluations.

Comparisons. We compare our proposed method with sev-
eral baselines. Ground Truth: GT samples are the original
music from dance videos. Foley Music [7]: music samples
generated using the Foley Music system. Foley Music model
generates MIDI musical representations based on keypoints
motion data and then converts the MIDI back to raw wave-
form using a pre-defined MIDI synthesizer. Specifically, the
MIDI audio representation is unique for each musical in-
strument, and therefore the Foley music model can only
generate musical samples with mono-instrumental sound.
Dance2Music [1]: music samples generated using the on-
line approach proposed in [1]. Similar to [7], the gener-
ated music is monotonic in terms of the musical instrument.
JukeBox [3]: music samples generated or reconstructed via
the JukeBox model.

We observe in Table 1 that the genre accuracy scores
of our D2M-GAN are considerably higher compared to
the competing methods. This is due to the reason that the
competing methods rely on MIDI events as audio represen-
tations, which require a specific synthesizer for each in-
strument, and thus can only generate music samples with
mono-instrumental sound. In contrast, our generated VQ
audio representations can represent complex dance mu-
sic similar to the input music types, which helps to in-
crease the diversity of the generated music samples. It also
makes the generated samples to be more harmonious with
the dance videos compared to acoustic instrumental sounds
from [1,7], as shown in the next evaluation protocol for the
coherence test.

Overall Quality. Finally, we look at the general sound qual-
ity of the generated samples by conducting the subjective
MOS tests similar to the coherence evaluation, where the
human testers are asked to give a score between 1 to 5 for
the general quality of the music samples. During this test,
only audio signals are played to the testers. The JukeBox
samples are obtained by directly feeding the GT samples as
input. The MOS tests show that our D2M-GAN is able to
generate music sample with plausible sound quality compa-
rable to the JukeBox model.

4. Conclusion

We propose D2M-GAN framework for complex music
generation from dance videos via the VQ audio representa-
tions. Extensive experiments on multiple datasets, and com-
prehensive evaluations in terms of various musical charac-
teristics prove the effectiveness of our method.
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