
SEMI: Self-supervised Exploration via Multisensory Incongruity

Abstract

Efficient exploration is a long-standing problem in re-
inforcement learning since extrinsic rewards are usually
sparse or missing. A popular solution to this issue is to
feed an agent with novelty signals as intrinsic rewards. In
this work, we introduce SEMI, a self-supervised exploration
policy by incentivizing the agent to maximize a new nov-
elty signal: multisensory incongruity, which can be mea-
sured in two aspects, perception incongruity and action in-
congruity. The former represents the misalignment of the
multisensory inputs, while the latter represents the variance
of an agent’s policies under different sensory inputs. Us-
ing both incongruities as intrinsic rewards, SEMI allows
an agent to learn skills by exploring in a self-supervised
manner without any external rewards. The effectiveness of
SEMI is demonstrated across a variety of benchmark en-
vironments including object manipulation and audio-visual
games.

1. Introduction
Efficient exploration is a major bottleneck in reinforce-

ment learning problems. In many real-world scenarios, re-
wards extrinsic to an agent are extremely sparse or com-
pletely missing, leading to nearly random exploration of
states. A common remedy to exploration is adding intrin-
sic rewards, i.e., rewards automatically computed based on
the agent’s model of the environment. Existing formula-
tions of intrinsic rewards include maximizing “visitation
count” [4, 23, 36] of less-frequently visited states, “curios-
ity” [30, 32, 37] where future prediction error is used as
reward signal and “diversity rewards” [12, 22] which incen-
tivizes diversity in the visited states. These rewards provide
continuous feedback to the agent when extrinsic rewards are
sparse, or even absent. However, it is challenging to de-
ploy these methods in practice. For “visitation count” based
method, it is hard to count in a continuous space. And for
“predictive model” based method, the key challenge is to
model and interact with a stochastic world where multiple
futures are available.

Recently a popular line of works in using intrinsic reward
to train an RL agent are using prediction error [32, 37, 6, 7],
prediction uncertainty [15, 29], or improvement [23] of a
forward dynamics or value model as intrinsic rewards. A
concurrent work from Dean et al. [10] has also demon-
strated the effectiveness of using multisensory signals as
intrinsic rewards. In using multimodal signal for self-
supervision, several works leverage the natural correspon-
dence [2, 34] and synchronization [31, 21] between the au-

Figure 1: SEMI: a self-supervised exploration policy by incen-
tivizing the agent to maximize multisensory incongruity, including
perceptual incongruity and action incongruity. Perceptual incon-
gruity indicates the misalignment between the multisensory per-
ceptual inputs, and action incongruity refers to the discrepancy of
actions under different perceptual inputs.

dio or tactile and RGB streams to learn representations. A
recent work from Dean et al. [10] has also used the tem-
poral incongruity from multisensory perception as intrinsic
rewards.

In this work, we introduce SEMI, a self-supervised ex-
ploration method by incentivizing the agent to maximize
multisensory incongruity, including perceptual incongruity
and action incongruity, as shown in Figure 1.

Perceptual incongruity is defined as the misalignment
between multisensory inputs. As humans, the coincidence
of senses gives us strong evidence that they were generated
by a common, underlying event [39], since it is unlikely
that they co-occurred across multiple modalities merely by
chance. Thus, the misalignment or incongruity between
multisensory streams can be used as a strong signal of nov-
elty. Researches in psychology suggested that this incon-
gruity can attract human’s attention and trigger further ex-
ploration [5, 11], which has been widely used in product
design [25, 24]. In SEMI, we use such novelty to guide
robot exploration. Specifically, an alignment predictor is
trained to detect misalignment between multisensory in-
puts. The model observes raw sensory streams — some of
which are paired, and some have been shuffled — and we
task it with distinguishing between the two. This challeng-
ing task forces the model to fuse information from multiple
modalities and meanwhile learn a useful feature representa-
tion. The prediction error of the sensor fusion model serves
as a metric of perceptual incongruity, which is further used
as an intrinsic reward to guide the agent’s exploration.

Action incongruity is defined as the discrepancy of an
agent’s decisions when it perceives different senses of the
same underlying event. This is inspired from the fact that
humans are able to integrate multimodal sensory informa-
tion in a near-optimal manner for decision making [1, 26],



Figure 2: SEMI pipeline overview: at time step t, an agent takes action at given a multisensory observation Ot as input and ends up in a
new state. The multisensory fusion model takes a new observation Ot+1 as input and predicts whether these sensory inputs are aligned. The
prediction loss is used as the measure of perceptual incongruity. The variance of actions suggested by the policy network given different
combination of multisensory inputs is used to measure action incongruity. Both incongruities are used as intrinsic rewards to train the
policy π.

and are even robust to the loss of some senses [14, 18]. Sen-
sory compensation empowers humans to make similar deci-
sions when different senses are used [9, 3, 20]. In SEMI, a
policy network is learned with multi-modal dropout during
multisensory fusion. Concretely, we randomly drop one or
several modalities during multisensory fusion to imitate loss
of senses. The variance of actions suggested by the policy
network under different dropout states is used to measure
action incongruity, which is also used as an intrinsic reward
for better exploration.

SEMI is evaluated in two challenging scenarios: object
manipulation (vision and depth) and audio-visual games
(Gym Retro). We show that SEMI outperforms “predictive
model” based exploration policy by a large margin in both
scenarios.

2. Method
SEMI is a self-supervised exploration policy that in-

centivizes agents to maximize multisensory incongruities,
which we formulate as two aspects: perceptual incongruity
(Section 2.1) and action incongruity (Section 2.2). Both in-
congruities are fed to the agent as intrinsic rewards to en-
courage its exploration. Figure 2 gives an overview of the
pipeline of SEMI, and we will detail each sub-module in the
following.

Notation. Given an agent’s current observation Ot at time
t, our goal is to generate intrinsic curiosity reward rt so
that the agent learns a policy π to explore unknown and
difficult environment. In this paper, we focus on the mul-
tisensory setting, where the agent observes a set of percep-
tual inputs Ot = {o1t , o2t , ..., oMt }, where M is the number
of modalities, which could represent vision, audio, touch,
etc. By executing an action at produced by the policy, the

agent further observes the next state, which we denote as
Ot+1 = {o1t+1, o

2
t+1, ..., o

M
t+1}.

2.1. Multisensory Perceptual Incongruity

The synchrony of multiple senses is a fundamental prop-
erty of natural event perception. We humans are extremely
sensitive to the incongruity between these senses, which is
a strong signal of novelty. For example, if a common ob-
ject makes an uncommon sound, we are motivated to further
interact with this object to gain better knowledge about it.
Inspired by this observation, we aim to use such novel asso-
ciation signals as curiosity to drive an RL agent to explore
unfamiliar states.

To guide an agent to explore novel states, we propose an
alignment predictor to discover the perceptual incongruity.
Alignment prediction can take various forms, one possible
design is to predict one sensory stream from other streams.
For example, we could generate sounds from a correspond-
ing visual input, or generate images from its sounds. How-
ever, generating data in the raw signal space is proved to be
challenging, since (1) it does not handle the cases of multi-
ple possible targets, (2) it suffers from overfitting to trivial
details or noises [32].

A better idea is to predict the compatibility of multisen-
sory streams in the latent space. Along the idea of con-
trastive learning [28, 8], our design of alignment predictor
directly maximizes the agreement between different modal-
ities of the same event. This is achieved by predicting pos-
itive (aligned) modality streams from negative ones via a
contrastive loss penalty in the latent space. The predicted
alignment score can then be used as an indicator of percep-
tual incongruity.

Concretely, the alignment predictor comprises the fol-
lowing two major components.



• A set of neural network base encoders
(f1(·), ..., fM (·)) that extracts representation vectors
from each modality. Our framework is agnostic to the
choices of neural network architectures. In the following
experiments, we use a 2D ConvNet to extract RGB visual
features, another 2D ConvNet to obtain depth features, and
a Short Time Fourier Transform (STFT) followed by a 1D
ConvNet to extract the audio features.

• A contrastive loss function defined for a contrastive
learning. Given one sensory stream oj from a multisensory
observation O = {oi}|i=1,...,M (we omit time t in the fol-
lowing for brevity), we define the other M−1 simultaneous
sensation streams {oi}|i ̸=j as positive examples. In a mini-
batch of N observations, there are M × (N − 1) sensory
streams from other modalities, which can be used to build
misaligned examples. The contrastive prediction task aims
to identify aligned sensory streams from these misaligned
examples.

The similarity of a pair of multimodal observation
(oi, oj) are measured by the cosine distance, i.e.

sim(oi, oj) = cos(fi, fj) =
fTi · fj

||fi|| · ||fj||
, (1)

where fi = fi(o
i), fj = fj(o

j) are features from different
modalities. Then the contrastive loss function for a pair of
positive observation (oik, o

j
k) is defined as

L(oik, o
j
k) = −log

exp(sim(oik, o
j
k)/τ)∑N

n=1

∑M
m=1

exp(sim(oik, o
m
n )/τ)

,

(2)
where τ denotes a temperature parameter.

The multisensory perceptual incongruity of an obser-
vation Ok is then defined numerically as the sum of
losses of all possible multisensory pairs from the same
timestep, which can be used as an intrinsic reward rp =∑M

i=1

∑M
j=i+1 L(oik, o

j
k).

2.2. Multisensory Action Incongruity

Congruity in actions is inspired from the fact that human
perception is robust to the partly loss of senses, and humans
have an exceptional ability to compensate for the loss with
other senses. If we make different decisions with different
sensory inputs, it suggests we have low confidence of the
event we experienced, e.g. an inexperienced driver might
change lane recklessly without a good understanding of the
distance of cars from the sound noise. Inspired by the above
observation, we further aim to use the action incongruity as
an indicator of novelty in RL exploration.

Here we implement the action incongruity via drop of
senses. Proposed by Srivastava et al. [40], dropout has
been widely used to prevent neural networks from overfit-
ting [19, 16]. Gal et al. [13, 17] further cast dropout training
in deep neural networks as approximate Bayesian inference

in deep Gaussian processes, which offers a mathematically
grounded framework to reason about model uncertainty.

We adopt a similar approach by taking a sensory-wise
dropout strategy during sensor fusion for the policy net-
work. Then multisensory action incongruity is defined as
the divergence of actions suggested by the policy network
given different combinations of multisensory observations.

Specifically, we combine features of different modalities
with dropout to obtain a fused perceptual feature z,

z =
1∑M

i=1 1
i
(

M∑
i=1

1ifi) (3)

where 1i ∈ {0, 1} indicates the existence of fi. Apparently,
different combinations of 1i will lead to different z. We
collect the action outputs from the policy network πr given
all possible inputs z’s (2M − 1 possible inputs in total), and
define the variance of these actions as the multisensory ac-
tion incongruity. The action incongruity is further used as
an intrinsic reward ra for exploration,

ra =
1

2M − 1

2M−1∑
k=1

||πr(z
k)− 1

2M − 1

2M−1∑
k=1

πr(z
k)||22.

(4)

2.3. Multisensory Incongruities as Intrinsic Re-
wards

To summarize, we use both multisensory perceptual in-
congruity and multisensory action incongruity as intrinsic
rewards. It is worth noting that the policy network πr used
to calculate intrinsic reward rat is different from that used
for exploration π. Inspired by Double Q-learning [42] and
Dual Policy Iteration [41], πr, with parameters θ being the
same as π except that its parameters are copied every τ steps
from the π. This simple strategy not only reduces the ob-
served overestimations, but also leads to better convergence.

At time step t, the agent takes action at given multisen-
sory observation Ot with modality dropout as input and re-
ceives a new observation Ot+1 and intrinsic reward in cal-
culated as rt = rpt + γ × rat , where γ is a weight factor.
The agent is optimized using PPO [38] to maximize the ex-
pected reward according to

max
θ

Eπ(Ot;θ)(
∑
t

rt). (5)

3. Experiments

We evaluate the performance of SEMI in two environ-
ments, OpenAI Robotics and Atari.



Exploration Strategy Interaction Rate
(1 objects)

Convergence
Iteration

Interaction Rate
(1 of 3 objects)

Uni-IR

Curiosity 2.7% 25 8.3%
Random 8.4% 0 22.6%

Disagreement 26.3% 23 64.3%
SEMI (P) 30.5% 20 81.4%

SEMI (PA) 34.4% 33 82.1%

Table 1: We measure the exploration quality by evaluating the object interaction frequency of the agent trained with different intrinsic
rewards (Row 1-5) and a combination of intrinsic rewards (Row 6-7).

Figure 3: We compare different intrinsic reward formulations across different Atari games. We run three independent runs of each
algorithm and show the mean extrinsic reward during training. SEMI far outperforms curiosity-based baseline and disagreement-based
baseline, and also learns more efficiently.

3.1. Exploration via Multisensory Incongruity

3.1.1 Environment and Setting

OpenAI Robotics We evaluate our method on OpenAI
Robotics [35], where robot receives RGB image and Depth
image as two modalities, and controls the gripper Cartesian
movement, gripper rotation as well as gripper open or close.

Atari We also evaluate our method on Atari games, where
vision and audio are considered as multi-modal inputs. We
use Gym Retro [27] in order to access game audio. Further
details for the two evaluation environments are described in
the supplementary materials.

3.1.2 Training Details

In general, we used 5 convolutional layers to extract RGB
features, a similar network to extract depth features or
5 consecutive frames channel-wise spectrum to represent
audio feature. We used a 4-layer multi-layer perceptron
(MLP) as our policy network and used PPO to maximized
the intrinsic reward with an Adam Optimizer. During train-
ing, all rewards that are collected in trajectories will be re-
placed or added by intrinsic reward.

3.1.3 Results

OpenAI Robotics Table 1 shows the exploration perfor-
mance of object manipulation using the multisensory incon-
gruity, which are measured by the frequency at which our

agent interacts (i.e., touches) with the object (i.e. interac-
tion rate). The interaction rate is defined as #trials robot
interact with object/#total trials.

We evaluate two different versions of our method. We
first use only the multisensory perceptual incongruity as our
intrinsic reward, as described in Section 2.1. Second, we
use both multisensory perceptual incongruity and multisen-
sory action incongruity as our intrinsic reward.

We compare SEMI to Curiosity [32, 6] and Disagree-
ment [33] as our baselines. Also, we compared with a ran-
dom policy as a sanity check, which samples its action uni-
formly from the action space.

As shown in Table 1, our method outperforms all of these
baselines. The method of Disagreement [33] has a perfor-
mance close to that of our method.

Atari We also test out method in Atari MsPacman, As-
sault, AirRaid, Alien, Space Invaders, Breakout, and Beam
Rider. Figure 3 shows the extrinsic reward of some Atari
games during exploration with SEMI in comparison of in-
trinsic reward via RND, Curiosity and Disagreement. It
should be pointed that during training the agent only has
access to the intrinsic reward. As illustrated in Figure 3, our
method converges faster and achieves better performances
comparing with most of the baseline methods. The reason is
that audio signals are always triggered by significant events
(e.g. eating pellets) in these games. Thus, the multisen-
sory incongruity is more indicative compared with curios-
ity and disagreement baselines, which are influenced by the
stochasticity of the environments.
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