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Figure 1. RAVEn overview. Given masked video and audio, students predict outputs of unmasked momentum teachers, via shallow
Transformer predictors that intake mask tokens.

1. Introduction

Auditory (or automatic) speech recognition (ASR) and
visual speech recognition (VSR; also known as lipreading)
benefit greatly from the combination of high-capacity neu-
ral networks and large datasets, but the effort required for
transcription hinders the scaling of labelled data.

A solution is to first learn, in a self-supervised way,
general representations from large corpora of unlabelled
data, and then fine-tune them on smaller labelled datasets
[13]. The fine-grained correspondence between the (syn-
chronised) visual and auditory modalities provides a natural
source of self-supervision. However, approaches leverag-
ing this correspondence either (1) only work for word-level
samples rather than continuous speech [4–6]; (2) use hand-
crafted features (e.g., spectrograms or MFCCs) as their in-

puts or targets [12, 17], which contain inductive biases that
may influence the learned representations; (3) use multi-
stage pre-training procedures [12, 14, 17]; and/or (4) use
separate pre-training strategies for VSR and ASR [17],
complicating the process of obtaining representations suit-
able for both tasks.

In this work, we present a single-stage self-supervised
approach that jointly learns visual and auditory speech rep-
resentations from raw video and audio only: RAVEn (Raw
Audio-Visual Speech Encoders). It involves a pair of
student-teacher networks for each modality, whereby the
students encode temporally-masked inputs, and, through the
use of lightweight Transformer-based predictors, regress
outputs of momentum-based teachers [2, 8] that are pre-
sented with unmasked inputs. Our experiments demonstrate
state-of-the-art performance for self-supervised methods on
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LRS3 [1] in low- and high-resource labelled data settings.

2. Method

Masking. We employ masking to encourage the students
to take context into account when solving the task. Given
a grayscale video and an audio sample, we randomly sam-
ple with probability 0.2 each video frame to be the start-
ing mask index, and if selected, then the consecutive three
frames are zeroed out. A similar mask is applied to the au-
ditory input, except that it is enlarged by a factor of 640.

Encoders. The masked video and audio are fed to
their corresponding student encoders, each consisting of a
modality-specific, convolutional feature extractor followed
by a Transformer encoder. The video feature extractor is a
2D ResNet18 [9] with a 3D convolutional stem [15], out-
putting an embedding per frame. On the audio side, we use
a 1D ResNet18 which produces features at 25 fps, to match
the video sampling rate.

Predictors. The students contain lightweight 2-block,
512-D Transformer predictors , which regress targets given
1) the encoder outputs corresponding to the unmasked por-
tions of the inputs and 2) mask tokens associated with the
masked portions. Unlike other works which output global
representations and thus use MLPs as predictors [3, 8], we
use Transformers to allow modelling temporal dynamics.

Targets. The targets are the outputs of momentum-based
teachers [2,8], which are given as input the unmasked video
or audio, in order to force the students to predict the miss-
ing information. The momentum parameters of the teach-
ers follow a cosine schedule from 0.999 to 1. The use
of momentum-based teachers obviates the need for hand-
crafted targets or multi-stage training.

Prediction tasks. We propose a loss structure that reflects
the asymmetry between the visual and auditory modalities
w.r.t. speech information. The audio student predicts the
targets from both the video and audio teacher, thus ben-
efiting from the ability of cross-modal learning to induce
semantic representations, while at the same time being en-
couraged to retain information from the auditory input that
is absent from the visual one. As a result, two predictors
are associated with the audio student, one for each target
type. On the other hand, the video student only predicts the
auditory targets, which are inevitably of higher quality.

Losses. The loss function is the negative cosine similar-
ity [8] between pairs of (aligned) corresponding features,
and then summed across the time dimension. For audio-to-
audio prediction, the loss is applied only to targets corre-
sponding to masked portions of the input [7]. For the cross-
modal tasks, the loss is applied to all targets.

Method Encoder LM Unlab hrs Lab hrs WER (%)

VSR ASR

supervised
Shillingford et al. (2018) RNN ✓ - 3,886* 55.1 -
Makino et al. (2019) RNN ✗ - 31,000* 33.6 4.8
Serdyuk et al. (2021) Transf ✗ - 90,000* 25.9 2.3
Serdyuk et al. (2022) Conf ✗ - 90,000* 19.3 1.6

self-supervised
Base models, less data
Ma et al. (2021) Transf ✗ 433 30 71.9† -
Hsu et al. (2021) Transf ✗ 433 30 - 5.4
Shi et al. (2022) Transf ✗ 433 30 51.8 4.9
RAVEn Transf ✗ 433 30 47.0 4.7

Large models, more data
Hsu et al. (2021) Transf ✗ 1,759 30 - 3.2
Shi et al. (2022) Transf ✗ 1,759 30 32.5 2.9
Shi et al. (2022) w/ self-training Transf ✗ 1,759 30 28.6 -
RAVEn Transf ✗ 1,759 30 32.5 2.7
RAVEn w/ self-training Transf ✗ 1,759 30 24.8 2.3
RAVEn w/ self-training Transf ✓ 1,759 30 23.8 1.9

Table 1. LRS3 low-resource setting.

Method Encoder LM Unlab hrs Lab hrs WER (%)

VSR ASR

self-supervised
Base models, less data
Shi et al. (2022) Transf ✗ 433 433 44.0 -
RAVEn Transf ✗ 433 433 39.1 2.2

Large models, more data
Hsu et al. (2021) Transf ✗ 1,759 433 - 1.5
Shi et al. (2022) Transf ✗ 1,759 433 28.6 1.3
Shi et al. (2022) w/ self-training Transf ✗ 1,759 433 26.9 -
RAVEn Transf ✗ 1,759 433 27.8 1.4
RAVEn w/ self-training Transf ✗ 1,759 433 24.4 1.4
RAVEn w/ self-training Transf ✓ 1,759 433 23.1 1.4

Table 2. LRS3 high-resource setting.

Fine-tuning For fine-tuning, we append a linear layer and
a Transformer decoder to the student encoders for joint CTC
/ attention decoding [18]. We use SentencePiece [11] sub-
word units as our targets.

3. Main results

Low-resource setting. We pre-train our models on LRS3
or LRS3+Vox2-en [17] and then fine-tune on the 30-hour
LRS3 subset to evaluate performance when labels are scarce
(see Table 1). Our Base variant outperforms all related
methods on VSR. The Large model provides significant
boosts over the Base model (32.5% vs 40.2% WER) when
using LRS3+Vox2-en for pre-training, keeping the num-
ber of labelled data points fixed. Using a language model
with self-training leads to a WER of 23.8%, better than a
method [16] trained on 90,000 hours of non-public data.

On ASR, RAVEn significantly outperforms the audio-
only Hubert [10] model, and in all cases is better than or on
par with AV-HuBERT. Our best ASR model without self-
training achieves 2.7% WER vs AV-HuBERT’s 2.9%, de-
spite using the same pre-training for VSR and ASR.

High-resource setting. Table 2 reports results when fine-
tuning on the full 433 hours of LRS3. RAVEn outperforms
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AV-HuBERT under all configurations on VSR. Our best re-
sult is 23.1%, achieved using self-training and a language
model. We are on par with the state-of-the-art for ASR in
the high-resource setting, achieving a WER of 1.4% with
the Large model. This is despite using raw audio as input
(rather than spectrograms [17]).

4. Conclusion
We propose RAVEn, a single-stage method that jointly

learns visual and auditory speech representations entirely
from raw data, and achieves state-of-the-art results for VSR
and ASR on LRS3 for self-supervised methods. Our pre-
training methodology is general, and we hope it inspires fu-
ture research extending beyond speech recognition.
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