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Abstract

Human perception of the complex world relies on a com-
prehensive analysis of multi-modal signals, and the co-
occurrences of audio and video signals provide humans
with rich cues. This paper focuses on novel audio-visual
scene synthesis in the real world. Given a video record-
ing of an audio-visual scene, the task is to synthesize new
videos with spatial audios along arbitrary novel camera
trajectories in that audio-visual scene. Directly using a
NeRF-based model for audio synthesis is insufficient due
to its lack of prior knowledge and acoustic supervision. To
tackle the challenges, we first propose an acoustic-aware
audio generation module that integrates our prior knowl-
edge of audio propagation into NeRF, in which we asso-
ciate audio generation with the 3D geometry of the visual
environment. In addition, we propose a coordinate transfor-
mation module that expresses a viewing direction relative to
the sound source. Such a direction transformation helps the
model learn sound source-centric acoustic fields. Moreover,
we utilize a head-related impulse response function to syn-
thesize pseudo binaural audio for data augmentation that
strengthens training. We qualitatively demonstrate the ad-
vantage of our model in real-world audio-visual scenes.

1. Introduction
Vision and sound play essential roles in human percep-

tion of the surrounding scene. These two modalities con-
tain not only semantic information (e.g., the class of objects
and the content of speech) but also spatial information (e.g.,
the position of sound sources). Our brain can analyze and
integrate different modalities to thoroughly understand the
surrounding environment. Naturally, the absence of either
modality hinders our sense of the physical world. Recog-
nizing this, the machine perception research community has
seen a spectrum of works [2,3,5,6,11–13,15,16] proposed
to learn and model auditory and visual signals jointly.

Different from past audio-visual learning works, this pa-
per focuses on the synthesis of novel audio-visual scenes

Figure 1. NeRF learns to render visual scenes at novel poses. Be-
yond visual rendering, we present AV-NeRF for learning to syn-
thesize audio-visual consistent scenes including video frames at a
novel view and the corresponding binaural audio in the environ-
ment. Consistent sight and sound can provide users with an im-
mersive and realistic perceptual experience.

in the real world. We define novel audio-visual scene syn-
thesis as a task to synthesize a target video, including vi-
sual frames and the corresponding spatial audio, along an
arbitrary camera trajectory from given source videos and
trajectories. Learning from source video in a real-world en-
vironment with binaural audio, the generated target spatial
audio and video frames are expected to be consistent with
the given camera trajectory visually as well as acoustically
to ensure perceptual realism and immersion.

Although there are some similar works [4,9], these meth-
ods have some constraints that limit their usage in solving
our problem. Luo et al. [9] propose neural acoustic fields to
model sound propagation in a room. However, their model
works in a simulation environment and relies on ground-
truth acoustic labels. Du et al. [4] propose a manifold learn-
ing method that maps latent vectors to (image, audio) pairs.
However, the manifold cannot support the controllable gen-
eration of audio-visual pairs.

In this paper, we propose a novel NeRF-based method



for synthesizing real-world audio-visual scenes, dubbed
AV-NeRF. Briefly, we (1) introduce a novel acoustic-aware
audio generation method to encode our prior knowledge of
sound propagation; (2) propose a coordinate transformation
mechanism for effective direction expression; (3) introduce
a binaural audio augmentation method.

2. Method
Our method learns neural fields for synthesizing real-

world audio-visual scenes at novel poses. When training
AV-NeRF, we feed the model with several video clips (with
binaural audio) and corresponding camera trajectories when
capturing these video clips. We encourage AV-NeRF learn-
ing a mapping from camera trajectories to video clips. At
inference time, we feed AV-NeRF with an arbitrary cam-
era trajectory and expect the model to output a target video
that is consistent with the input camera trajectory visually
and acoustically. The whole pipeline is illustrated in Fig. 2.
Our model consists of three trainable modules: V-NeRF, A-
NeRF and AV-Bridge. V-NeRF learns to generate acoustic
masks, A-NeRF learns to generate visual frames and AV-
Bridge is optimized to extract geometric information from
V-NeRF and integrate this information into A-NeRF.

2.1. V-NeRF

NeRF [10] uses a Multi-Layer Perceptron (MLP) to rep-
resent a visual scene implicitly and continuously. It learns a
mapping from camera poses to colors and densities:

NeRF : (x, y, z, θ, ϕ)→ (c, σ) , (1)

where X = (x, y, z) is the 3D position, d = (θ, ϕ) is the
direction, c = (r, g, b) is the color, and σ is the density. To
render view-dependent color c and ensure multiview consis-
tency, NeRF first maps a 3D coordinate (x, y, z) (we apply
positional encoding to all input coordinates, unless other-
wise noted) to density σ and a feature vector; then NeRF
maps the feature vector and 2D direction (θ, ϕ) to a color c.
This process is illustrated in Fig. 3a.

NeRF then uses the volume rendering method [8] to gen-
erate the color of any ray r(t) = o + td marching through
the visual scene with near and far bounds tn and tf :

C(r) =

∫ tf

tn

T (t)(r(t))c(r(t),d)dt , (2)

where T (t) = exp(−
∫ t

tn
(r(s))ds) and d = (θ, ϕ).

2.2. A-NeRF

The target of A-NeRF is to learn a neural acoustic repre-
sentation that can map 5D coordinates (x, y, z, θ, ϕ) to cor-
responding acoustic masks mm,md ∈ R2×F , where mm

means the change of magnitude and phase of sound w.r.t.

the position (x, y, z) while md means the change of magni-
tude and phase of sound w.r.t. the direction (θ, ϕ), and F is
the number of frequency bins:

NeRF : (x, y, z, θ, ϕ)→ (mm,md) . (3)

In practice, as shown in Fig. 3b, we feed A-NeRF with 3D
position (x, y, z) to obtain a mixture mask mm and a feature
vector. Then we concatenate this feature vector with the
input direction (θ, ϕ) and pass it to the rest part of A-NeRF
to generate a difference mask md. Given a sound of interest,
we can use mm and md to synthesize new binaural audio.

2.3. AV-Bridge

Given the fact that 3D geometry partially determines the
sound propagation in an environment, we propose an acous-
tic geometry-aware audio generation method. Specifically,
we query V-NeRF with discrete 3D points that are uni-
formly scattered in the environment. We compose the out-
put volume density into an environment voxel grid, which
represents the 3D structure of the scene. We then use a con-
volutional neural network to encode this voxel grid into a
compact environment vector. After obtaining the environ-
ment vector, we propose a Hypernetwork [7] to utilize this
geometric information for acoustic-aware audio generation.
We design a Hypernetwork ψ to convert the environment
vector v into parameters WA of A-NeRF inspired by [4]:

ψ : v →WA . (4)

For each learnable linear layer Wi ∈ Rm×n in A-NeRF,
we train a three-layer MLP to output a weight matrix M
of the same shape as Wi. The input of each MLP is the
environment vector v. The matrix M is fused with the pa-
rameters Wi to generate new parameters for guiding audio
generation:

Wi ←Wi ⊙M , (5)

where ⊙ is Hadamard product.

2.4. Coordinate Transformation

Because the human perception of the sound direction is
based on the relative orientation to the sound source instead
of the absolute direction, we propose expressing viewing
direction (θ, ϕ) relative to the sound source. This coordi-
nate transformation encourages A-NeRF learning a sound
source-centric acoustic field.

Given the 3D position of the sound source Xs =
(xs, ys, zs) and camera pose (X,d) = (x, y, z, θ, ϕ), we
obtain two direction vectors: V1 = Xs−X = (xs−x, ys−
y, zs − z) and V2 = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)).
We calculate the angle between V1 and V2 as the relative
direction coordinates ∠(V1,V2).



Figure 2. The pipeline of our method. Given the position (x, y, z) and viewing direction (θ, ϕ) of a listener, our method can render an
image the listener would see and the corresponding binaural audio the listener would hear. Our model consists of V-NeRF, A-NeRF, and
AV-Bridge. V-NeRF learns to generate acoustic masks, A-NeRF learns to generate visual frames and AV-Bridge is optimized to extract
geometric information from V-NeRF and incorporate this information into A-NeRF.

(a) V-NeRF

(b) A-NeRF

Figure 3. Architecture of V-NeRF and A-NeRF.

2.5. Binaural Audio Augmentation

To provide our model with more high-quality binaural
audio for training, we apply head-related impulse response
(HRIR) to the stereo audio to generate binaural audio fol-
lowing Xu et al. [14]. We exploit an open-sourced HRIR
database [1] for binaural audio augmentation.

2.6. Learning Objective

We refer to the combination of V-NeRF (Sec. 2.1) and
A-NeRF (Sec. 2.2) as the baseline method. We integrate
AV-Bridge (Sec. 2.3), coordinate transformation module
(Sec.2.4), and data augmentation mechanism (Sec. 2.5) into
the baseline method to assemble our AV-NeRF model. Be-
cause AV-Bridge is optimized together with A-NeRF and
the coordinate transformation module and data augmenta-
tion mechanism do not contain learnable parameters, the
baseline method and AV-NeRF are optimized using the
same learning objective.

Figure 4. Recording devices and two representative indoor scenes.

The loss function of V-NeRF is the same as [10]:

LV = ||C(r)− Ĉ(r)||2 , (6)

where C(r) is the ground-truth color along the ray r and
Ĉ(r) is the color rendered by V-NeRF.

We use the L2 loss to supervise A-NeRF. Given a mono
source audio as and a binaural target audio at, we calculate
the mix audio am = at(l)+at(r), the difference audio ad =
at(l)−at(r), and spectrums of as, am, and ad, which are ss,
sm, and sd, respectively. Then we minimize the distance
between calculated spectrums and predicted spectrums:

LA = ||sm − ŝm||2 + ||sd − ŝd||2

= ||sm − ss ∗mm||2 + ||sd − ss ∗mm ∗md||2.
(7)

3. Experiments
3.1. Experimental Settings

We collect two representative indoor scenes in a medium
and large room. The recording device and the indoor scenes
are shown in Fig. 4.



Figure 5. Results in Real-World Audio-Visual Scenes. We synthesize audio-visual scenes at novel camera poses that have no spatial overlap
with the training camera poses. We visualize both the rendered visual frames and binaural audio. The first column of both figures is the
camera poses, including training poses (colored red) and novel poses (colored otherwise). We mark the sound source as a black pentagram.
Starting from the second column, we show rendered images and rendered binaural audio. The color of rendered results corresponds to that
of the camera pose.

3.2. Experimental Results

We show the rendering results of the medium room in
Fig. 5. We rotate the camera to generate novel 360-degree
audio-visual scenes with the camera position fixed. As
shown in the figure, our AV-NeRF can render binaural audio
consistent with the camera orientations.

4. Conclusion
In this work, we propose a first-of-its-kind NeRF sys-

tem that is capable of synthesizing real-world audio-visual
scenes accompanied by binaural audio. We demonstrate the
effectiveness of our method in real-world indoor scenes.

References
[1] V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Avendano.

The cipic hrtf database. In Proceedings of the 2001 IEEE
Workshop on the Applications of Signal Processing to Audio
and Acoustics (Cat. No.01TH8575), pages 99–102, 2001. 3

[2] Changan Chen, Ziad Al-Halah, and Kristen Grauman. Se-
mantic audio-visual navigation. In CVPR, pages 15516–
15525, 2021. 1

[3] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vi-
cenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu,
Philip Robinson, and Kristen Grauman. Soundspaces:
Audio-visual navigation in 3d environments. In ECCV, 2020.
1

[4] Yilun Du, M. Katherine Collins, B. Joshua Tenenbaum, and
Vincent Sitzmann. Learning signal-agnostic manifolds of
neural fields. In NeurIPS, 2021. 1, 2

[5] Ruohan Gao and Kristen Grauman. 2.5d visual sound. In
CVPR, 2019. 1

[6] Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun
Bao, and Juyong Zhang. Ad-nerf: Audio driven neural radi-
ance fields for talking head synthesis. In ICCV, pages 5784–
5794, 2021. 1

[7] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks.
In ICLR, 2017. 2

[8] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. SIGGRAPH, 18(3):165–174, 1984. 2

[9] Andrew Luo, Yilun Du, Michael J Tarr, Joshua B Tenen-
baum, Antonio Torralba, and Chuang Gan. Learning neural
acoustic fields. NeurIPS, 2022. 1

[10] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3

[11] Shentong Mo and Pedro Morgado. Localizing visual sounds
the easy way. In Shai Avidan, Gabriel J. Brostow, Moustapha
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