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Abstract

The Video-to-Audio (V2A) model has recently gained
attention for its practical application in generating audio
directly from silent videos, particularly in video/film pro-
duction. However, previous methods in V2A have lim-
ited generation quality in terms of temporal synchroniza-
tion and audio-visual relevance. We present DIFF-FOLEY,
a synchronized Video-to-Audio synthesis method with la-
tent diffusion model (LDM) that generate high quality audio
with improved synchronization and audio-visual relevance.
We adopt contrastive audio-visual pretraining (CAVP) to
learn more temporally and semantically aligned features,
then train an LDM with CAVP aligned visual features on
spectrogram latent space. The CAVP aligned features en-
able LDM to capture the subtler audio-visual correlation
via cross-attention module. We further significantly im-
prove sample quality with ‘double guidance’. DIFF-FOLEY
achieves state-of-the-art V2A performance on current large
scale V2A dataset. Our demos are available: https://
sinishell2.github.io/Diff-Foley.github.
io/

1. Introduction
Recent advances in generative models have accelerated

the development of AI-Generated Content. Progress has
been made in various multi-modal generation tasks like
Text-to-Image (T2I) [13,14], Text-to-Audio (T2A) [10,11],
and Text-to-Video (T2V) [5]. This paper focus on Video-to-
Audio (V2A) Generation, which has practical applications
in video/film production and automatic foley.

Unlike text-based generative models requiring lots of
hard-to-collect text-data pairs for training, audio-video
pairs for V2A tasks are readily available with millions of
new videos uploaded to YouTube daily. The challenge is to
design a reliable and scalable generative model for V2A.

V2A generation has always been a challenging problem.
First, the generated audio should match the video content.
Second, the generated audio should be in sync with video
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because humans are sensitive to the synchronicity between
audio and video. Although some progress [2, 8] has been
made recently on V2A, most methods for generating audio
focus only on the content relevance, neglecting crucial as-
pect of audio-visual synchronization. For example, given a
video of playing drums, current methods can only generate
drums sound, but cannot ensure the sounds match exactly
with what’s happening in the video (e.g hitting the snare
drum or the crash cymbal at the right time)

RegNet [2] uses a pretrained (RGB + Flow) network
as conditional inputs to GAN for synthesizing sounds.
Meanwhile, SpecVQGAN [8] uses Transformer-based au-
toregressive model conditioned on pretrained ResNet50 or
(RGB + Flow) visual features for better sample quality.
These methods have limitations in generating audio that
is both synchronized and relevant to video content as pre-
trained image and optical-flow features cannot capture the
nuanced correlation between audio and video.

We present DIFF-FOLEY, a novel V2A generative frame-
work based on LDM that synthesizes realistic and syn-
chronized audio with strong audio-visual relevance. Fo-
ley, which adds synchronized and realistic sound effects
to video, is a more challenging task in V2A. Our model
overview is shown in Figure 1. It first learns more tempo-
rally and semantically aligned features via CAVP. By max-
imizing similarity of visual and audio features in the same
video, it captures subtle audio-visual connections. Second,
an LDM conditioned on CAVP visual features is trained on
Spec. latent space. CAVP aligned visual features helps
LDM in capturing audio-visual relationships. To further
improve sample quality, we propose ‘double guidance’, us-
ing classifier-free and alignment classifier guidance simul-
taneously to guide reverse process. DIFF-FOLEY achieves
state-of-the-art performance on large scale V2A dataset
VGGSound [1] with IS of 60.39, outperforming SpecVQ-
GAN [8] baseline (IS of 30.01) by a large margin.

2. Method

2.1. Audio-Visual Contrastive Pretraining

The audio and visual components from the same video
are strongly correlated and complement each other. When
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Figure 1. Overview of DIFF-FOLEY: First, it learns more semantic and temporal aligned audio-visual features by CAVP, capturing
the subtle connection between audio-visual modality. Second, a LDM conditioned on the aligned CAVP visual features is trained on the
spectrogram latent space. DIFF-FOLEY can synthesize highly synchronized audio with strong audio-visual relevance. P(·) denotes pooling
layer.

watching a silent drumming video, viewers can easily
imagine corresponding sounds, and expect different sounds
when drummers hit different parts of the drums. Unfortu-
nately, Current image and optical flow backbones (ResNet,
CLIP, etc.) struggle to reflect the strong alignment relation-
ship between audio and visual. To overcome this limitation,
we propose Contrastive Audio-Visual Pretraining (CAVP)
to align audio-visual features at the outset, facilitating the
subsequent generation process.

Given a audio-video pair (xa, xv), where xa ∈ RT ′×M

is a Mel-Spec. with M mel basis and T ′ is the time dimen-
sion. xv ∈ RT ′′×3×H×W is a video clip with T ′′ frames.
An audio encoder fA(·) and a video encoder fV (·) are used
to extract audio feature Ea ∈ RT×C and video feature
Ev ∈ RT×C with same temporal dim T . We adopt the
design of audio encoder in PANNs [9], and SlowOnly ar-
chitecture for video encoder. Using temporal pooling layer
P (·), we obtain the temporal-pooled audio/video features,
Ēa = P (Ea) ∈ RC , Ēv = P (Ev) ∈ RC . We then use
the cross-entropy symmetric objective similar in CLIP [12]
to contrast Ēa and Ēv . To improve semantic and temporal
alignment of audio-video features, we use two objectives:
Semantic contrast LS and Temporal contrast LT .

For LS , we maximize the similarity of audio-visual pairs
from the same video, and minimize the similarity of audio-
visual pairs from different videos. It encourages learning
semantic alignment for audio-visual pairs across different
videos. In specific, we extract audio-visual features pairs
from different videos, BS = {(Ēi

a, Ē
i
v)}

NS
i=1, where NS is

the number of different videos. We define the per-sample
pair semantic contrast objective: LS

(i,j), where sim(·) is
the cosine similarity.
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For LT , we sample video clips at different times within the
same video. It aims to maximize the similarity of audio-
visual pairs from the same time segment, and mininize the
similarity of audio-visual pairs across different time seg-
ments. In details, we sample different time segements
in the same video to extract audio-visual features pairs.
BT = {(Ēi

a, Ē
i
v)}

NT
i=1, where NT is the number of sampled

video clip within same video. We define the per sample pair
temporal contrast objective: LT

(i,j)
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a, Ē
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The final objective is defined as the weighted sum of seman-
tic and temporal objective: L = LS + λLT , where λ = 1.
After training, CAVP encodes an audio-video pair into em-
bedding pair: (xa, xv) → (Ea, Ev) where the (Ea, Ev) are
highly aligned, with the visual features Ev containing rich
information for audio. The aligned and strongly correlated
features Ev and Ea facilitate subsequent audio generation.

2.2. LDM with Aligned Visual Representation

LDMs [14] are probabilistic models that fit the data dis-
tribution p(x) by denoising on the data latent space. LDMs
first encode the origin high-dim data x into low-dim latent
z = E(x) for efficient training. The forward and reverse
process are performed in the compressed latent space. In
V2A generation, our goal is to generate synchronized au-
dio xa given video clip xv . Using similar latent encoder
Eθ in [14], we compress Mel-Spec xa into a low-dim la-
tent z0 = Eθ(xa) ∈ RC′×T ′

r
×M

r , where r is the compress rate.
With pretrained CAVP model to align audio-visual features,
the visual features Ev contain rich audio-related informa-
tion. This enable to synthesize highly synchronized and rel-
evant audio using LDMs conditioned on Ev . In forward
process, origin data distribution transforms into Gaussian



MODEL VISUAL FEATURES GUIDANCE
METRICS

IS ↑ FID ↓ KL ↓ ALIGN ACC (%) ↑
SpecVQGAN [8] RGB + Flow ✘ 30.01 8.93 6.93 52.94
Diff-Foley (Ours) Audio-Visual Contrastive CFG Guidance (✔) 52.07 11.61 6.33 92.35
Diff-Foley (Ours) Audio-Visual Contrastive Double Guidance (✔✔) 60.39 10.73 6.42 94.78

Table 1. Video-to-Audio generation evaluation results with CFG scale ω = 4.5, CG scale γ = 50.

by adding noise gradually with a fixed schedule α1, . . . , αT ,
where T is the total timesteps, and ᾱt =

∏t
i=1 αi.

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I)

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I)

(3)

The denoising objective [6] of LDM is:
LLDM = Ez0,t,ϵ∥ϵ− ϵθ(zt, t, Ev)∥22 (4)

After LDM is trained, we generate audio latent by sampling
through the reverse process with zT ∼ N (0, I), conditioned
on the given visual-features Ev .

pθ(zt−1|zt) = N (zt−1;µθ(zt, t, Ev), σ
2
t I)
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1

√
αt

(
zt −

1− αt√
1− ᾱt
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)
σt =

1− ᾱt−1
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(5)

At last, the Mel-spectrogram is obtained through decoding
the generated latent z0 with a decoder D, x̂a = D(z0).

2.3. Temporal Split & Merge Augmentation

Using large-scale text-image pairs datasets like LAION-
5B is crucial for the success of current T2I models [14].
However, for V2A generation task, large scale and high
quality datasets are still lacking. Further, we expect V2A
model to generate highly synchronized audio based on vi-
sual content, such temporal audio-visual correspondence
requires a large amount of audio-visual pairs for training.
To overcome this limitation, we propose using Temporal
Split & Merge Augmentation to facilitate model training
by incorporating prior knowledge for temporal alignment
into training process. During training, we randomly ex-
tract video clips of different time lengths from two videos
(Split), denoted as (x1

a, x
1
v), (x

2
a, x

2
v), and extract visual fea-

tures E1
v , E

2
v with pretrained CAVP model. We then create

a new audio-visual feature pairs for LDM training with:
znew
a = Eθ([x1

a; x
2
a]) , Enew

v = [E1
v ; E

2
v ] (6)

, where [·; ·] represent temporal concatenation (Merge).
Split and merge augmentation greatly increase the number
of audio-visual pairs, preventing overfitting and facilitating
LDM to learn temporal correspondence.

2.4. Double Guidance

Guidance techniques is widely used in diffusion model
reverse process for controllable generation. There are cur-
rently two main types of guidance techniques: classifier

guidance [3] (CG), and classifier-free guidance [7] (CFG).
For CG, it additionally train a classifier (e.g class-label clas-
sifier) to guide the reverse process at each timesteps with
gradient of class label loglikelihood ∇xt log pϕ(y|xt). For
CFG, it does not require an additional classifier, instead it
guides the reverse process by using linear combination of
the conditional and unconditonal score estimates [7], where
the c is the condition and ω is the guidance scale.

ϵ̃θ(zt, t, c)← (1 + ω)ϵθ(zt, t, c)− ωϵθ(zt, t,∅) (7)

Although CFG is currently the mainstream approach used
in diffusion models, the CG method offers the advantage
of being able to guide any desired property of the gener-
ated samples given true label. In V2A setting, the desired
property refers to semantic and temporal alignment. More-
over, we discover that these two methods are not mutually
exclusive. We propose a double guidance technique that
leverages the advantages of both CFG and CG methods by
using them simultaneously at each timestep in the reverse
process. In specific, for CG we train an alignment classi-
fier Pϕ(y|zt, t, Ev) that predict whether a audio-visual pair
is a real pair in terms of semantic and temporal alignment.
For CFG, during training, we randomly drop condition Ev

with prob. 20%, to train conditional and unconditional like-
lihood ϵθ(zt, t, Ev), ϵθ(zt, t,∅). Then double guidance is
achieved by improved noise estimation:

ϵ̂θ(zt, t, Ev)←(1 + ω)ϵθ(zt, t, Ev)− ωϵθ(zt, t,∅)

− γ
√
1− ᾱt∇zt logPϕ(y|zt, t, Ev)

(8)

, where ω, γ is the CFG, CG guidance scale.

3. Experiments

Datasets In this paper, we use two datasets VGGSound
[1] and AudioSet [4]. VGGSound consists of ∼200K
10-seconds videos. We follow the original VGGSound
train/test splits. AudioSet comprises 2.1M videos with 527
sound classes, but it is highly imbalanced, with most of the
videos labeld as Music and Speech. Since generating mean-
ingful speech directly from visual features is not expected in
V2A tasks (not necessary either), we download a subset of
the Music tag data and all other tags except Speech, result-
ing in a new dataset named AudioSet-V2A with about 80K
music tagged videos and 310K other tagged videos. We use



MODEL STAGE1 PRETRAINED DATASET CFG GUIDANCE CG GUIDANCE
METRICS

IS ↑ FID ↓ KL ↓ ALIGN ACC (%)↑

Diff-Foley (Ours)

VGGSound ✘ ✘ 19.86 18.45 6.41 67.59
VGGSound ✔ ✘ 51.42 11.48 6.48 85.88
VGGSound ✔ ✔ 53.45 10.67 6.54 89.08

VGGSound + AudioSet-V2A ✘ ✘ 22.07 18.20 6.52 69.41
VGGSound + AudioSet-V2A ✔ ✘ 52.07 11.61 6.33 92.35
VGGSound + AudioSet-V2A ✔ ✔ 60.39 10.73 6.42 94.78

Table 2. Abalation Study: The effect of different Stage1 pretrained dataset and different guidance strategies. ω = 4.5, γ = 50

VGGSound and AudioSet-V2A for Stage1 contrastive pre-
training, while for Stage2 LDM training and evaluation, we
only use VGGSound, which is consistent with the baseline.

Evaluation Metrics For evaluation, we adopt Inception
Score (IS), Frechet Distance (FID) and Mean KL Diver-
gence (MKL) proposed in [8]. IS evaluates both sample
quality and diversity, FID evaluates distribution-level sim-
ilarity between generated and ground-truth samples, and
MKL measures paired sample level similarity. We also in-
troduce a new metric, Alignment Accuracy (Align Acc),
to assess synchronization and audio-visual relevance qual-
ity. We train an alignment classifier to predict whether the
audio-visual pairs is the real pairs, During training, we use
three different types of pairs: 50% of the pairs are real
audio-visual pairs (true pair) labeled as 1, 25% are audio-
visual pairs from the same video but temporally shifted
(temporal shifted pair) labeled as 0, and the remaining 25%
are audio-visual pairs from different videos (wrong pair) la-
beled as 0. Our alignment classifier can reach 90% accuracy
on test set. To better evaluate the generated sample quality,
we select IS and Align Acc as the primary evaluation met-
rics in this paper. For each video sample in testing set, we
generate 10 audios for evaluation, resulting in around 145K
generated audio samples.

Baseline We compare DIFF-FOLEY to SpecVQGAN [8], a
state-of-the-art V2A model.We used pre-trained SpecVQ-
GAN models trained on VGGSound and chose the best-
performing visual feature setting (RGB+Optical Flow).

3.1. Video-to-Audio Generation Results

Quantitative evaluation results on VGGSound test set are
in Table 1. DIFF-FOLEY significantly outperforms base-
line method in IS, MKL and Align Acc, while maintaing
comparable performance on FID. Notably, DIFF-FOLEY
achieves twice the performance of baseline on IS (60.39
v.s 30.01). Moreover, DIFF-FOLEY achieves an impressive
94.78% Align Acc, compared to baseline’s 52.94% Align
Acc. Generated results are available at the demo link 1.

1https : / / sinishell2 . github . io / Diff - Foley .
github.io/, recommending to use Chrome browser.

3.2. Ablation Study

We conduct extensive ablation study on DIFF-FOLEY in
Table 2, exploring various Stage 1 pretrained datasets and
guidance techniques. 1). Performance improves with more
pre-training data, as shown by rows 1-4, 2-5, and 3-6. 2).
Guidance techniques significantly enhance model perfor-
mance in all metrics except KL. 3). Double guidance tech-
niques achieve the best performance on IS and Align Acc,
the primary audio quality metrics of interest.

4. Conclusion

We introduce DIFF-FOLEY, a V2A approach for gener-
ating highly synchronized audio with strong audio-visual
relevance. We empirically demonstrate the superiority of
our method in terms of generation quality. Moreover, we
show that using double guidance technique to guide the re-
verse process in LDM can further improve the audio-visual
alignment of generated audio samples. Additionally, we
conduct an ablation study, analyzing the effect of pretrained
dataset size and various guidance techniques.
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