
Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels - Extended
Abstract

Pingchuan Ma1 Alexandros Haliassos1 Adriana Fernandez-Lopez2 Honglie Chen2

Stavros Petridis1,2 Maja Pantic1,2 *

1Imperial College London 2Meta AI

1. Introduction

Audio-visual speech recognition has received a lot of at-
tention due to its robustness against acoustic noise. Re-
cently, the performance of automatic, visual, and audio-
visual speech recognition (ASR, VSR, and AV-ASR, re-
spectively) has been substantially improved, mainly due to
the use of larger models and training sets. However, accu-
rate labelling of datasets is time-consuming and expensive.
Hence, in this work, we investigate the use of automatically-
generated transcriptions of unlabelled datasets to increase
the training set size. In this work, we automatically generate
transcriptions for more than 2 000 hours of videos by utilis-
ing publicly-available ASR models. We then train ASR,
VSR and AV-ASR models with these transcriptions and
achieve state-of-the-art performance on LRS3. We show
that the accuracy of the pre-trained ASR models used to au-
tomatically transcribe the unlabelled datasets is not highly
correlated with the performance of the ASR and VSR mod-
els trained with these transcriptions. Furthermore, we show
that our audio-visual model is more robust against different
levels of noise than its audio-only counterpart.

2. Methodology

An overview of our label generation pipeline can be
found at the top of Fig. 1. To be specific, audio waveforms
from the unlabelled audio-visual datasets are fed into a pre-
trained ASR model to produce automatic transcriptions. For
the purpose of this study, we use two unlabelled datasets:
VoxCeleb2 [5] and AVSpeech [7]. We are interested in
training models in English. Thus, we use the VoxLingua107
language classifier [21] to filter the AVSpeech dataset, re-
sulting in a total of 1 323 hours; the list of English data
we use for VoxCeleb2 is obtained from [19], and comprises

*Only non-Meta co-authors downloaded, accessed, and used the
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processing (no dataset pre-processing took place on Meta’s servers or
facilities). Code and trained models are available at: https://
github.com/mpc001/auto avsr

Method WER [%]

A† A†† V A

CM-Transducer [10] 1.62 3.31 19.1 0.99

HuBERT [9] 1.90 6.87 19.8 1.12

Wav2vec 2.0 [4] 3.40 11.22 19.1 1.06

Whisper [16] 4.10 1.81 19.0 1.04

Table 1. Impact of the pre-trained ASR models used to generate
automatic transcriptions from unlabelled data on the performance
of VSR/ASR models on the LRS3 dataset. † and †† denote the
word error rate (WER) reported on Librispeech test-clean set [14]
and LRS3 test set [2], respectively. “CM” denotes Conformer.

1 307 data hours. Next, we leverage publicly-available ASR
models to produce automatically generated transcriptions.
It is worth pointing out that our work facilitates reproduc-
tion and comparison since all datasets and models used are
publicly accessible.

We investigate the impact of the automatic transcrip-
tions given by four different ASR models on the perfor-
mance of audio-only and visual-only models, i.e. Whis-
per [16], wav2vec2.0 [4], Hidden unit BERT (HuBERT) [9]
and Conformer-Transducer [8, 10]. We adopt the off-the-
shelf architecture presented in [11], which has achieved
state-of-the-art performance on LRS3 without the use of
external data. The architecture is shown at the bottom of
Fig. 1.

For the purposes of this study, we use the LRS3
dataset [2] consisting of 151 819 video clips from TED
talks with a total of 439 hours. For training, we also
use the LRS2 dataset (223 hours) [6], English-speaking
videos from AVSpeech (1 323 hours) [7] and VoxCeleb2
(1 307 hours) [5] as the additional training data together
with automatically-generated transcriptions.

3. Results
Do better Librispeech ASR models provide better tran-
scriptions for VSR and ASR? Results of the ASR
and VSR models trained with the automatically-generated
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Figure 1. AV-ASR architecture overview.

Method Type Extra
Data

Total
Hours‡

WER
(%)

CM-seq2seq [11]

V

✗ 438
46.9

CM-aux [12] 37.9
Ours 36.3
KD + CTC [3]

✓

772 59.8
KD-seq2seq [17] 818 59.0
TM-seq2seq [1] 1 362 58.9
AVHuBERT [19] 1 759 26.9
RNN-T [13] 31 000 33.6
VTP [15] 2 676 30.7
ViT3D-CM [18] 90 000 17.0
Ours 818 33.0
Ours 1 902 23.5
Ours 3 448 19.1
CM-seq2seq [11]

A

✗ 438 2.3

RNN-T [13]

✓

31 000 4.5
AV-HuBERT [19] 1 759 1.5
Ours 818 1.5
Ours 1 902 1.0
Ours 3 448 1.0
CM-seq2seq [11]

A+V

✗ 438 2.3

RNN-T [13]

✓

31 000 4.8
AV-HuBERT [19] 1 759 1.3
ViT3D-CM [18] 90 000 1.6
Ours 1 902 1.0
Ours 3 448 0.9

Table 2. WER (%) of our audio-only, visual-only and audio-visual
models on the LRS3 dataset. ‡ The total hours are counted by
including the datasets used for both pre-training and training.

transcriptions on the LRS3 dataset are shown in the third
and fourth columns, respectively, of Table 1. We observe
that overall the WER on Librispeech is not highly cor-
related with the performance of the ASR and VSR mod-
els trained with the automatically-generated transcriptions
from the corresponding pre-trained ASR models. The same
conclusion is also true when we measure the WER on the
LRS3 test.
Comparison with the state-of-the-art. Results on
LRS3 are presented in 2. The best visual-only model

Type Noise SNR levels [dB]
12.5 7.5 2.5 -2.5 -7.5

A Babble‡ 1.1 1.2 1.6 2.7 8.3
A+V 1.0 1.0 1.5 2.2 5.6

A Pink 1.4 1.9 4.3 13.1 56.8
A+V 1.2 1.4 2.3 6.0 16.2

A White 2.1 4.0 10.4 30.2 88.9
A+V 1.4 2.3 4.3 9.5 24.2

Table 3. WER (%) of our audio-only and audio-visual models as
a function of the noise levels on the LRS3 dataset. ‡ denotes the
noise type used in both training and test set.
has a WER of 19.1 %, which is outperformed only
by [18] (17.0 % WER) which uses 26× more training data.
Similarly, our audio-only model establishes a new state-of-
the-art [19] by achieving a WER of 1.0 % when using 1 921
hours of training data from LRW, LRS3 and VoxCeleb2
datasets. However, when further introducing AVSpeech
for training, no further improvement is observed, suggest-
ing that the ASR performance may have reached saturation.
State-of-the-art performance is also achieved for AV-ASR
with a WER of 0.9 %.
Noise experiments. Results of ASR and AV-ASR mod-
els, when tested with different acoustic noise levels, are
shown in Table. 3. We show that, overall, the results are
consistent with those presented in [1, 11, 13, 20], i.e. the
performance of audio-only models is closer to the audio-
visual counterpart in the presence of low levels of noise,
whereas the performance gap becomes larger as the noise
levels increase.

4. Conclusion
In this work, we propose a new strategy to scaling up

audio-visual data for speech recognition, which takes ad-
vantage of well-known ASR models to annotate audio-
visual data. In this way, our AV-ASR system achieves state-
of-the-art on LRS3 with less than 1% of WER.
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