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1. Introduction
The issue of imbalance has garnered significant attention

across various domains, including loss imbalance in multi-
task learning, category imbalance in long-tailed datasets,
etc. Imbalance problems are also prevalent in the area of
multimodal learning, where models tend to rely on the dom-
inant modality in the presence of discrepancies between
modalities [7]. Recent studies [7, 9] have endeavored to
address the issue of modality imbalance. Wang et al. [9]
found the phenomenon that the performance of multimodal
models would be inferior to the unimodal model due to the
modality overfitting behaviors. Peng et al. [7] and Wu et
al. [10] proposed to solve the modality imbalance problem
with the perspective of the optimization process, while Han
et al. [5] alleviated this issue by making reliable multi-view
fusion. However, we observe that although existing imbal-
ance methods exhibit superior performance on the overall
testing set, they even fail to perform better than the uni-
modal model when inference on some modality-preferred
subsets as illustrated in Figure 1. This phenomenon has not
been adequately addressed in prior works but it may impact
the reliability of multimodal models in certain scenarios,
such as those involving modality noise.

To provide a comprehensive analysis of this phe-
nomenon, we first introduce a metric to estimate the sample-
wise modality discrepancy with unimodal confidence and
divide existing datasets into different modality-preferred
subsets. Concretely, we define a modality-preferred subset
as a set of samples whose corresponding modality confi-
dence is higher than the other modality. Further, we evalu-
ate existing imbalance methods and find that: although ex-
isting imbalance methods achieve better performance than
unimodal modality on the overall testing set, they consis-
tently perform worse than the unimodal model on the visual
preferred testing subset across different datasets as demon-
strated in Figure 1(a-b).

However, given the data-driven nature of deep learn-
ing [10], it is inevitable that the serious modality bias
present in existing datasets such as Kinetics-Sound [1] and
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VGG-Sound [2] will cause multimodal models to learn this
bias. Thus, to further investigate the effectiveness of imbal-
ance methods, we build a balanced audiovisual dataset con-
taining samples with various modality discrepancies, and
the allocation of such modality discrepancy remains uni-
formly distributed over the dataset, as shown in Figure 1(c).

Based on our balanced dataset, we re-evaluate existing
imbalance methods and find results consistent with the pre-
vious phenomenon: there still exists no imbalance method
exceeding all unimodal models on every modality-preferred
testing subset as shown in the histogram of Figure 1(c).
We further select testing subsets with different modality
discrepancies to evaluate the performance of existing im-
balance methods and surprisingly find that the larger the
modality discrepancy is, the worse the multimodal mod-
els perform compared with the unimodal one. This phe-
nomenon indicates that existing imbalance methods have
difficulty handling multimodal data with large modality dis-
crepancy. Thus, the evaluation of different modalities dis-
crepancies should also be considered to comprehensively
analyze the performance of multimodal models.

To summarize, our contributions are as follows:

• We introduce an evaluation metric to estimate the
modality discrepancy and point out that existing au-
diovisual datasets suffer from serious modality bias.

• We provide a balanced audiovisual dataset with uni-
formly distributed modality discrepancies to support
further analysis for multimodal models.

• We find that existing multimodal models would exhibit
inferior performance than the unimodal one in scenar-
ios with serious modality discrepancy. We highlight
the importance of addressing this issue in future re-
search to ensure the reliability of multimodal models
across various application scenarios.

2. Evaluation Methods
2.1. Modality discrepancy estimation

Inspired by some sample difficulty measure work in uni-
modal datasets [3], we provide an estimation method for
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Figure 1: (a-b) show the heatmaps of modality discrepancy distribution and classification results on the existing datasets. In
the heatmap, the color represents the proportion of samples, the brighter area indicates larger samples. (c) shows our balanced
heatmap and the classification results.

measuring the sample-wise modality discrepancy, which
utilizes the difference between unimodal confidence assign-
ing to the true label during the training process.

Concretely, we consider a training dataset of size N ,
S = {(Xi, Yi)}Ni=1 where the ith sample contains the obser-
vation, Xi and its true label, Yi. In multimodal datasets, we
consider each observation Xi consists of M inputs from dif-
ferent modalities, referred as Xi = (xm1

i , .., xmk
i , .., xmM

i ),
where mk refer to the kth modality respectively. We first
train each unimodal model with an individual modality for
Emk

epochs, and utilize the average confidence of unimodal
to represent the learning difficulty for the ith sample:

ûmk
i = 1

Emk

Emk∑
e=1

pmk

θ (e)(yi|xmk
i ),

where pmk

θ (e) presents the confidence of unimodal model
with parameters θ at the eth epoch.

We divide such average unimodal confidence scores
into 0.01 intervals, then count the samples of correspond-
ing intervals and calculate the proportion, which could be
regarded as a distribution of modality discrepancy. We
present the resulting distribution as a heatmap in Figure 1,
where the coordinates correspond to the average unimodal
confidence scores and the color represents the proportion
of samples within the corresponding interval. Our method
thus provides an intuitive method to visualize the modality
discrepancies in multimodal datasets.

2.2. Dataset split strategy

We use the average unimodal confidence ûa
i and ûv

i ,
to represent the unimodal confidence on audio and visual
modalities. To investigate modality bias in audiovisual
datasets, we split an existing audiovisual dataset into two
subsets based on the unimodal confidence scores. We name
these subsets the audio-preferred subset and the visual-
preferred subset. If ûa

i > ûv
i , the sample would be split

into the audio-preferred subset, while if ûv
i > ûa

i , the sam-
ple would be split into the visual-preferred subset instead.

With our split strategy, we divide the testing set of
existing datasets into different modality-preferred subsets.

As depicted in Figure 1(a-b), our estimation results prove
that there exists serious modality bias in these audiovisual
datasets, which may not be adequate for comprehensive
analysis of the existing modality imbalance methods.

3. Experiments on Existing Datasets
3.1. Experiments settings

We estimate the modality discrepancy of Kinetics-
Sound [6] and VGG-Sound [2] datasets, and further, eval-
uate existing imbalance methods on these datasets. We use
ResNet-18 as the backbone for both modalities. Following
Peng et al. [7], for audio input, we extract the spectrogram
with a sample rate of 48kHz, while we extract frames with
1fps and randomly select frames as the visual input.

For modality discrepancy estimation, we train each
modality separately to evaluate the unimodal confidence.
Given that the coverage speed of each modality varies in
different datasets, we adopt an early-stop strategy during
training to obtain reliable unimodal confidence.

3.2. Experiments results

In this section, we conduct a comprehensive evaluation
of existing imbalance methods using different subsets, with
a vanilla late-fusion method as the baseline. Specifically, we
first evaluate the performance on the overall testing set, then
compare the results on modality preferred subsets referring
to the split strategy.

As presented in Table 1, we find some results consistent
with the recent works [7]: all imbalance methods perform
better than the unimodal model on the overall set, which
proves the effectiveness of multimodal learning. Besides,
compared with the baseline, all imbalance methods gain
significant improvement across different datasets, which in-
dicates that existing methods alleviate the modality imbal-
ance problem to some extent.

Although the imbalance methods achieve great perfor-
mance on the overall subset, we observe that existing meth-
ods consistently perform worse than the unimodal model in
the weak-modality preferred subset. Concretely, consider-



Kinetics-Sound VGG-Sound

Methods Overall Audio preferred Visual preferred Overall Audio preferred Visual preferred

Baseline 61.73 60.96 69.09 48.65 52.38 27.50
OGM-GE 64.57 63.20 74.44 50.89 53.43 35.63

Grad-Blending 66.00 64.34 73.82 51.47 53.73 35.87
Greedy 66.35 64.51 80.75 50.32 52.68 37.37

Audio unimodal 51.52 54.32 31.23 41.25 45.39 10.86
Visual unimodal 47.67 42.28 86.43 32.44 28.65 51.67

Table 1: Evaluation results on the existing audiovisual dataset.

ing the VGG-Sound [2] dataset is a curated sound-oriented
dataset, where the audio-preferred subset contains a signif-
icantly larger number of samples than the visual-preferred
subset. The visual modality is weaker in comparison to the
audio modality. However, Table 1 shows that although the
visual unimodal performance is worse than existing imbal-
ance methods on the overall set, the visual unimodal model
exceeds other multimodal models with a large margin on the
visual-preferred subset, which hints that existing imbalance
methods still fail to fully utilize the weak modality.

However, considering the greedy nature of deep learn-
ing [10], the multimodal models would inevitably learn
the modality biases inherent in these biased audiovisual
datasets, which would potentially impact the evaluation of
these imbalance methods.

4. The Balanced Audiovisual Dataset
To alleviate the influence of modality bias and further

study the effectiveness of imbalance methods, we build a
balanced audiovisual dataset with full consideration of the
modality discrepancy. As shown in Figure 1(c), our bal-
anced dataset contains samples with various modality dis-
crepancy, and the allocation of such modality discrepancy
is uniformly distributed over the dataset.

To automatically collect videos with corresponding la-
bels, we filter the crawled videos with the off-the-shelf
pretrained unimodal models (SlowFast [4] pretrained on
Kinetics-400 [6] for visual modality and VGGish [8] pre-
trained on VGG-Sound [2] for audio modality). Con-
strained by the pretrained datasets, we select several cat-
egories with the same semantic concept existing in both
datasets, then integrate them into 30 categories and crawl
videos from YouTube for corresponding topics.

Then we extract the full videos into 10-seconds clips and
evaluate unimodal confidence for each clip with pretrained
model. Referring to the unimodal confidence, we split
the clips into three types, called the high-correspondence
clips, audio-correct clips, and visual-correct clips to build
our dataset, where the high-correspondence clips mean
both unimodal models predict true label, audio-correct clips
mean only audio modality model predict the true label while
the visual-correct clips are on the opposite. With such clip

selection strategy, we could preliminarily build a nearly bal-
anced audiovisual dataset, which contains audiovisual clips
of three types with similar proportion.

However, the preliminary dataset suffers from long-
tailed distribution and slight modality bias due to the limi-
tation of crawling from the website, such as the instruments
videos are easy to collect while some human action cate-
gories are difficult to obtain, etc. Thus, to deal with such
problem, we screen extra samples from VGG-Sound [2] and
Kinetics-400 [6] and incorporate them into our dataset. In
the end, we estimate the modality discrepancy of our dataset
and recalibrate by removing noise and some data from dom-
inated modality referring to such estimation. Finally, our fi-
nal overall dataset retains 7,929 samples from the Kinetics-
400 dataset, 14,498 samples from the VGG-Sound dataset,
and 13,424 samples collected from YouTube. Our dataset
remains a uniformly distributed modality discrepancy over
the dataset, as shown in Figure 1(c).

5. Experiments on Our Dataset

5.1. Testing on modality-preferred subset

As Table 2 shows, when trained on our balanced audio-
visual dataset, all the imbalance methods exhibit superior
performance than the baseline and the unimodal model on
the overall set, which proves the effectiveness of existing
imbalance methods.

However, there still exists no method that exceeds all
unimodal models on every modality-preferred subset. The
Baseline, OGM-GE [7] and Grad-Blending [9] methods
gain significant improvement on the audio-preferred subset,
but fail to perform better than the visual unimodal model in
the visual-preferred subset. While the Greedy [10] method
performs better than the visual unimodal model but less than
the audio unimodal model in the audio-preferred subset.

The results of Table 2 indicate that although existing im-
balance methods have achieved notable enhancements, they
still have difficulty handling samples with modality discrep-
ancy. To analyze the influence of the modality discrepancy
on multimodal models, we propose to evaluate these meth-
ods with various modality discrepancy subsets.



Methods Overall Audio preferred Visual preferred

Baseline 70.47 78.62 59.37
OGM-GE 72.27 78.92 63.59

Grad-Blending 72.04 79.49 61.89
Greedy 72.01 72.46 71.41

Audio unimodal 62.96 77.76 44.79
Visual unimodal 49.82 36.79 67.58

Table 2: Evaluation results on our dataset.

5.2. Testing with different modality discrepancy

Given we have obtained the average unimodal confi-
dence ûm

i of each sample, we propose a threshold T to split
the testing subset. Concretely, if ûa

i − ûv
i > T , the sam-

ple would be split into the audio-dominated subset, while
if ûv

i − ûa
i > T , the sample would be split into the visual-

dominated subset. When threshold T increases, the modal-
ity discrepancy in the corresponding subset would be larger.
In experiments, we set the threshold T as 0, 0.2, and 0.4 to
select the subset with different modality discrepancies.

We provide the results with different thresholds T on
the audio-dominated subset and the visual-dominated sub-
set in Figure 2. When we only consider the T = 0 scenar-
ios, there exist some multimodal models exceeding the uni-
modal model on the corresponding subset (e.g., the OGM-
GE in the audio-dominated subset and the Greedy in the
visual-dominated subset). However, when the threshold T
increases, only the samples with larger modality discrep-
ancy would remain in the modality-dominated subset, and
the unimodal model performs better than other multimodal
models on the corresponding modality-dominated subset
(The audio model performs better than other imbalance
methods on the audio dominated subset when T = 0.4).

The multimodal models are expected to perform better
than unimodal models, however, the extra information in-
stead hinders the performance on multimodal data of large
modality discrepancy. Considering the samples with larger
modality discrepancy would have more modality noise,
these results indicate that the modality noise would affect
the performance of multimodal models.

6. Conclusion

In this work, we first introduce a modality discrepancy
estimation metric and find that existing audiovisual datasets
suffer from serious modality bias. To support the compre-
hensive analysis of the modality imbalance methods, we
build a balanced audiovisual dataset with uniformly dis-
tributed modality discrepancies. Further, we evaluate ex-
isting imbalance methods with different modality discrep-
ancy subsets and find that multimodal models would ex-
hibit inferior performance than the unimodal one in some
scenarios with serious modality discrepancy. This compre-

Baseline OGM-GE Grad-Blending Greedy Audio unimodal Visual unimodal

(a) Testing on audio-dominated subset (b) Testing on visual-dominated subset

Figure 2: Evaluation results on modality-dominated subsets
with different threshold T .

hensive evaluation method with different modality discrep-
ancies should be considered to make sure the reliability of
multimodal models in different application scenarios.
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