
VGGSounder: Audio-Visual Evaluations for Foundation Models
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Abstract

The emergence of audio-visual foundation models un-
derscores the importance of reliably assessing their
multi-modal understanding. The classification dataset
VGGSound is commonly used as a benchmark for evalu-
ating audio-visual understanding. However, our analysis
identifies several critical issues in VGGSound, including in-
complete labelling, partially overlapping classes, and mis-
aligned modalities. These flaws lead to distorted evalua-
tions of auditory and visual capabilities. To address these
limitations, we introduce VGGSounder, a comprehensively
re-annotated, multi-label test set extending VGGSound that
is specifically designed to evaluate audio-visual foundation
models. VGGSounder features detailed modality annota-
tions, enabling precise analyses of modality-specific per-
formance and revealing previously unnoticed model limita-
tions. VGGSounder offers a robust benchmark supporting
the future development of audio-visual foundation models.

1. Introduction
Multi-modal foundation models integrating visual and au-
ditory data foster a holistic understanding of audio-visual
content. Rigorous evaluation benchmarks have been instru-
mental in assessing the effectiveness of multi-modal foun-
dation models [7, 9, 10, 14]. To support this, we introduce
an enhanced version of the VGGSound dataset [2], a stan-
dard audio-visual classification benchmark.

VGGSound suffers from significant issues: We find
that its data is inherently multi-label (e.g., a sample
might simultaneously be labelled as playing drum kit and
playing acoustic guitar when multiple instruments are
present). This challenge is further compounded by partially
overlapping classes (e.g., the label orchestra often appears
alongside individual instrument classes). Moreover, evalu-
ating the contribution of different modalities to the perfor-
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Figure 1. We introduce VGGSounder, a multi-label audio-
visual classification dataset with modality annotations. We
extend the original VGGSound labels with human-annotated
co-occurring audible , visible , and visible+audible classes.
We also add meta labels for common confounders. Our analysis
enables the detailed analysis of auditory and visual capabilities of
audio-visual model.

mance of audio-visual foundation models requires modality
annotations for each class, as some annotated classes are ei-
ther not visually present or not audible. We do not remove
these samples as inaudible or invisible cues are common in
natural videos and critical for multi-modal benchmarking
(after all, a self-driving car should not only stop only when
it both sees and hears a pedestrian crossing).

To address these shortcomings, we develop an improved
benchmark called VGGSounder, following similar works
in other domains [1, 5]. We adopt a multi-label classifica-



tion setting by collecting rich annotations on a per-sample
basis including (1) additional classes present, (2) explicit
modality annotations with each label to mitigate modal-
ity misalignment, (3) additional metadata about the pres-
ence of background music, voice-over, or static images,
and (4) resolve overlapping classes. Overall, we provide a
foundation-model-ready benchmark and a structured analy-
sis of whether models rely on audio or visual cues.

We make the following contributions:
1. We illustrate limitations of VGGSound in Sec. 2.
2. We curate VGGSounder with multi-modal human an-

notations for multi-label classification in Sec. 3.
3. We evaluate state-of-the-art audio-visual models, ob-

serving differences between embedding models and
autoregressive foundation models in Sec. 4.

4. We propose new metrics to quantify modality confu-
sion in Sec. 4.

2. Limitations of VGGSound
Our analysis focuses on the 15.446 10s-long video clips in
the VGGSound test set, labelled with one of 309 classes.
Co-occurring classes We find that most samples con-
tain multiple classes (Fig. 2A). These might be temporally
separated (e.g., male speech, man speaking before cutting
to footage of firing cannon ), or co-occur simultaneously.
Overlapping classes are often related, such as different in-
struments in a band or orchestra, but can also be entirely
unrelated.
Overlapping classes Class co-occurrence is exacerbated
by many of the 309 automatically generated classes par-
tially overlapping by definition (Fig. 2B). We found two
pairs of synonyms: timpani vs. tympani and dog barking

vs. dog bow-wow . Additionally, some classes are strict
subclasses of others, such as the gender-specific versions
of cattle mooing : cow lowing and bull bellowing . Fi-
nally, many classes commonly appear together, e.g., dif-
ferent musical instruments or semantically similar concepts
like sloshing water and splashing water .
Modality misalignment We find that some classes are in-
visible or inaudible (Fig. 2C). This modality misalignment
is even more pronounced for the numerous co-occurring,
unannotated classes: A large fraction of videos contains
background music, voice-over or narration, or other back-
ground sounds like bird chirping, tweeting without a vis-
ible source (Fig. 3D). Similarly, some videos contain vis-
ible but inaudible cues for classes like sea waves . Static
images are other frequent sources of misaligned modali-
ties. Finally, some classes are misaligned by definition:
wind noise is always audible and invisible. We estimate
that 48.43% of original samples have misaligned modali-
ties. Visually Aligned Sounds [3], Visual Sound [18], and

VGGSound-Sparse [8] removed samples with misaligned
modalities. In contrast, we posit that inaudible or invisible
cues are common in natural videos and should be consid-
ered during benchmarking.

Takeaway 1 VGGSound suffers from class co-
occurrence, overlapping class definitions, and modality
misalignment, see Fig. 2

3. Building VGGSounder

We propose a series of fixes for VGGSound’s issues, result-
ing in the updated VGGSounder benchmark.

First, we switch to a multi-label classification setting.
This effectively handles co-occuring classes and most over-
lapping class definitions: A well-performing model can as-
sign a high probability to multiple classes, even if they par-
tially overlap. This also allows us to ensure that synony-
mous classes and subclass-superclass pairs always appear
together in the ground-truth labels.

To deal with modality misalignment, we annotate each
label’s modality and add meta labels for background music ,
voice over , and static image(s) to optionally treat these
cases separately during evaluation.

Collecting proposals We create a gold standard reference
set by letting four computer vision experts label a random
subset of 417 VGGSound-Test samples that contains each
class. We merge these labels via majority vote. Next, we
combine predictions from several state-of-the-art models
with a manual heuristic to obtain 93% recall relative to the
gold standard. We run this classifier on the whole test set to
obtain an average of 30 label proposals per sample.

Human labelling We use Amazon Mechanical Turk to re-
annotate the entire VGGSound test set and validate the orig-
inal VGGSound labels with two pipelines; In the first run,
annotators enrich the original labels with modality annota-
tions, and in the second run indicate whether the video con-
tains background music , voice over , or static image(s) ,
then decide for each label proposal whether the class is
audible and/or visible and add missing classes. For both
pipelines, we label the samples in batches of 20, each con-
taining two gold standard samples as catch trials. We reject
and re-annotate all batches with a catch trial F1-score below
25% and merge labels via Dawid-Skene algorithm [15]

Final labels Our final labels merge the modality enhanced
original VGGSound labels with our annotators’ new la-
bels. We automatically add synonymous classes and super-
classes for given subclasses. E.g., we add cattle mooing if
cow lowing is in the set of labels.



firing cannon male speech, man speaking

male speech, man speaking
playing washboard
playing violin

cow lowing cattle mooing cricket chirping
people cheering
fireworks banging
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female singing
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Figure 2. Limitations of VGGSound. We show frames of test samples with original and missing labels . A. Many videos contain
multiple distinct classes. B. Classes often overlap or are ambiguous. C. Classes might be only audible or only visible .
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Figure 3. Overview of VGGSounder. A. Most samples contain more than one label. B. More than a quarter of labels are audible but not
visible. C. Most videos contain speech. D. 40% of the samples contain background music , voice over , and static image(s) .

Takeaway 2 VGGSounder extends VGGSound with
human-annotated multi-labels, modality annotations,
and meta-labels, as summarised in Fig. 3

4. Benchmarking audio-visual models

We benchmark ten audio-visual embedding and foundation
models on VGGSounder.

Models All models are evaluated in three configurations:
unimodal-audio, unimodal-video, or multi-modal. Fol-
lowing [7], we use embedding models pretrained on Au-
dioSet [6] and fine-tune them on VGGSound using the
corresponding modalities. Closed-source foundation mod-
els are evaluated in a zero-shot classification setup, open-
source foundation models undergo an LLM-assisted evalu-
ation protocol [4, 13].

Metrics We use several multi-label classification metrics.
Subset accuracy compares the predicted label set to the
ground-truth label set and reports the fraction of samples
for which they match. This is our strictest metric.
F1-score is the harmonic mean of precision and recall. It is
strictly larger than the subset accuracy.
Hit reports the fraction of samples for which any of the pre-
dicted labels are part of the ground-truth label set. This is
the most lenient metric and strictly larger than the F1-score.

Modality confusion (µ) is a new metric, which we define as

µmodality = 100 ·
Nmodality-correct,multimodal-wrong

Ntotal
, (1)

where correct/wrong is determined as in the Hit score. µ
is the fraction of samples that a model classified correctly
using a single modality, but misclassified when both modal-
ities were used together.

Foundation models yield an unordered set of class pre-
dictions of varying size, and we compute a single metric
using the entire set. Embedding model metrics can be com-
puted for the top-k predictions; we chose k = 1 to match
the foundation models’ median number of predictions.

Takeaway 3 We propose modality confusion µ to mea-
sure how frequently a model is distracted by an addi-
tional input modality; see Eq. (1).

4.1. Re-evaluating the state of the art
We present the benchmark performance of state-of-the-art
audio-visual models in Tab. 1.
Overall performance Unsurprisingly, all models perform
best with access to both input modalities (AV). Overall, the
foundation models have reached the performance of the spe-
cialized embedding models. However, the embedding mod-
els fine-tuned on VGGSound generally have stronger uni-
modal performance with audio inputs compared to visual



Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model A V AV A V AV A¬V V ¬A A V AV A V A∩V

Embedding Models
CAV-MAE [7] 22.57 26.58 33.22 40.25 39.54 48.87 21.04 31.31 64.54 54.81 67.26 3.60 5.86 0.78
DeepAVFusion [14] 16.13 15.16 28.56 28.85 23.17 42.33 15.22 16.06 46.36 32.15 58.32 3.29 3.51 0.11
Equi-AV [9] 18.72 14.70 26.87 33.66 23.01 39.79 17.97 17.56 53.98 31.90 54.77 6.71 6.92 1.43
AV-Siam [10] 21.66 27.34 30.18 38.85 40.35 44.37 20.19 31.89 62.30 55.93 61.08 9.88 9.07 3.94

Closed-source Foundation Models
Gemini 1.5 Flash [17] 1.87 17.87 19.00 11.94 38.90 43.38 14.09 28.92 25.23 47.63 58.81 8.33 4.36 0.61
Gemini 1.5 Pro [17] 2.95 24.96 24.11 16.97 50.65 52.93 17.70 31.94 28.74 68.08 73.47 2.00 4.96 0.53
Gemini 2.0 Flash [17] 2.74 15.62 14.38 11.99 36.30 37.75 8.47 27.49 17.23 44.10 47.94 2.06 5.22 0.93

Open-source Foundation Models
VideoLLaMA-2 [4] 15.68 20.51 23.97 35.50 43.00 46.75 21.68 33.66 44.14 39.00 44.48 9.82 4.15 2.21
UnifiedIO 2 [12] 19.00 18.58 34.88 41.07 36.70 56.30 28.67 33.14 54.97 35.86 68.49 7.65 5.71 1.80
PandaGPT [16] 7.43 11.19 12.59 28.20 31.25 33.61 23.48 25.61 27.72 26.36 28.54 10.13 8.81 3.17
Ola [11] 15.35 9.97 20.19 41.31 23.99 43.02 36.94 19.83 42.06 20.35 40.16 11.08 5.23 1.65

Table 1. Audio-visual video classification results on VGGSounder. We report multi-label classification metrics (subset accuracy, F1-
score, hit accuracy, modality confusion µ) for audio (A), visual (V), audio-visual (AV), audio-only (A¬V ) and video-only (V ¬A) inputs.
The embedding models were fine-tuned on the VGGSound training set. The closed-source multi-modal foundation models Gemini and
open-source models use a zero-shot evaluation protocol and LLM-assisted protocol respectively.

inputs, which is in line with their pretraining. Interestingly,
this trend is reversed for foundation models.

Takeaway 4 Foundation models perform comparably to
finetuned embedding models. Embedding models rely
more heavily on audio cues than on visual ones, the re-
verse is the case for foundation models, see Tab. 1.

Modality confusion Looking at the modality confusion
µ, all models have a substantial fraction of test samples
(4-11%) where adding a modality actively harmed perfor-
mance. Furthermore, for all models, a small portion of test
samples is not solvable multi-modally, even though they
were solvable in either modality alone (µA∩V ). This in-
sight is enabled by VGGSounder’s per-label modality an-
notations and shows that all models are susceptible to being
distracted by an additional modality. This is a concerning
issue for multi-modal models which should preserve uni-
modal capabilities when adding a second modality. Evalu-
ating this behaviour on the VGGSounder benchmark serves
as a first step towards enabling the development of mitiga-
tion strategies for improved audio-visual models.

Takeaway 5 Our modality confusion score µ reveals
that all models can be negatively impacted by additional
modalities, see Eq. (1) and Tab. 1.

Performance across modalities Fig. 4 shows performance
profiles across modalities. VideoLLaMA-2’s performance
is well-balanced, while Gemini 1.5 Flash/Pro distinctly un-
derperforms on audio inputs. Embedding models balance

AV

VA

0

0.5

1

CAV-MAE
AV

VA

0

0.5

1

DeepAVFusion
AV

VA

0

0.5

1

Equi-AV

AV

VA

0

0.5

1

Gemini 1.5 Flash
AV

VA

0

0.5

1

Gemini 1.5 Pro
AV

VA

0

0.5

1

VideoLLaMA 2

Benchmark
VGGSounder VGGSound

Figure 4. VGGSounder more accurately shows model perfor-
mance across modalities, here Hit score on VGGSounder and
accuracy on VGGSound, normalised by the per-model maximum.

modalities better, with DeepAVFusion and EquiAV slightly
underperforming on video inputs.

Takeaway 6 VGGSounder’s more complete ground-
truth labels allow for more accurate, modality-specific
profiling of model performance; see Fig. 4.

5. Conclusion
We present VGGSounder, an annotation-rich test set for
audio-visual foundation models featuring (1) comprehen-
sive human annotations for missing classes, (2) modality
annotations, and (c) meta-labels for frequently occurring
real-world challenges.
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