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Abstract

Recent audio-visual learning methods often use global
audio representations, limiting fine-grained temporal align-
ment with visual frames, and face conflicting optimization
goals between reconstruction and cross-modal alignment.
We propose CAV-MAE Sync, extending CAV-MAE [11] to
address these issues. We enhance temporal granularity
by aligning audio segments with video frames. We disen-
tangle objectives using dedicated global tokens for con-
trastive loss and patch tokens for reconstruction. Fi-
nally, we add register tokens to improve spatial localiza-
tion. CAV-MAE Sync achieves state-of-the-art results on
AudioSet, VGGSound, and ADE20K Sound for zero-shot re-
trieval, classification, and localization. Code is available at
https://github.com/edsonroteia/cav-mae-sync.

1. Introduction

Humans perceive the world in a multimodal way where
especially auditory and visual perception are very closely
connected. As a result, jointly learning the representations
of both modalities has been a longstanding active research
topic in multimodal learning [1–3, 6, 19, 21, 26]. Specif-
ically audio-visual alignment has been tackled from multi-
ple perspectives, with major works focusing on contrastive
learning [5, 20, 24], but also exploring fusion-based meth-
ods [15, 17, 22, 25]. Recently, multitask formulations com-
bine multiple learning objectives and have emerged as a
promising direction for audio-visual representation learn-
ing. In particular, CAV-MAE [11] introduced a framework
that jointly optimizes contrastive alignment between modal-
ities and masked reconstruction within each modality. By
leveraging both cross-modal and intra-modal learning sig-
nals, this approach has emerged as a foundational architec-
ture that has inspired several follow-up works [12, 16, 18].

We argue that while these methods have achieved im-

*araujo@em.uni-frankfurt.de

Figure 1. By representing audio with multiple finer-grained repre-
sentations aligned with individual video frames, CAV-MAE Sync
improves the precision of audio-visual alignment, in contrast to
the original CAV-MAE, which uses a global audio representation
that struggles with fine-grained temporal correspondence.

pressive results, they face two key limitations: they typi-
cally align video frames with global audio representations
(e.g., matching 10 seconds of audio to a single frame), and
they force both contrastive and reconstruction objectives
to share a single representation, creating competing opti-
mization goals. To address these issues, we propose CAV-
MAE Sync, a simple yet effective extension of CAV-MAE
that leverages natural temporal alignment between modali-
ties while relaxing joint representation constraints. Our ap-
proach tackles three challenges: (1) addressing granularity
mismatch by treating audio as a temporal sequence aligned
with video frames (Figure 1), (2) resolving tension between
competing objectives by introducing separate global tokens
for each task, and (3) incorporating learnable register tokens
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Figure 2. Overview of our approach. Our model processes video frames and audio segments in parallel through separate encoders Ea and
Ev , with the audio encoder Ea operating on finer temporal granularity to better align with visual frames. Both modalities interact through
the Joint Layer L and the Joint Decoder D The model is trained with both reconstruction and contrastive objectives.

that reduce semantic load on patch tokens while enabling
finer-grained alignment. Experiments on VGGSound, Au-
dioSet, and ADE20K datasets demonstrate that CAV-MAE
Sync outperforms not only the original architecture but also
competes with significantly more complex models across
zero-shot retrieval, classification, and localization tasks.
Our contributions can be summarized as follows: (1) We
propose CAV-MAE Sync, an extension of the CAV-MAE
architecture that allows for a fine-grained temporal resolu-
tion on the audio side to support direct vision-audio align-
ment. (2) We introduce global tokens to disentangle the
inhibiting contrastive and reconstruction objectives and add
registers to the pipeline to further de-noise the ViT signal.
(3) We evaluate the proposed setup on various downstream
tasks and show a superior performance, even compared to
significantly more complex architectures.

2. CAV-MAE Sync

2.1. Overview

Our method employs the contrastive masked autoencoder
framework [11], training the model to reconstruct both vi-
sual and audio signals while enhancing audio-visual align-
ment through a contrastive objective. Unlike traditional
approaches that utilize a single audio representation, we
implement a sequence of audio representations temporally
aligned with visual frames. This strategy ensures more co-
herent temporal alignment between audio and visual modal-
ities without complicating the model architecture. For
downstream tasks, we leverage the finer-grained audio-

visual correspondences learned during pretraining. Figure
2 illustrates the data flow of our approach. In the following
subsections, we first review the basics of CAV-MAE and
then extend it in a second step toward the proposed CAV-
MAE Sync framework.

2.2. Background: CAV-MAE

CAV-MAE processes video-audio pairs by sampling a
frame vi and using the full Mel spectrogram of the corre-
sponding audio ai. Both inputs are patchified, randomly
masked, and tokenized into sequences uv and ua, incor-
porating positional and modality embeddings. These un-
masked token sequences are passed through separate Vision
Transformer (ViT) encoders, Ev and Ea, yielding modality-
specific representations zv and za. While sharing the same
architecture and initialization, the encoders are trained inde-
pendently. A joint transformer layer J processes these rep-
resentations using three forward passes with shared weights
but distinct layer normalizations: for visual tokens (zv), for
audio tokens (za), and one for their concatenation ([zv; za]).

For the contrastive objective, global representations cvi
and caj are obtained by averaging the output patch tokens
(hv, ha) from the single-modality passes. An InfoNCE loss
Lc aligns these representations:

Lc = → 1

N

N∑

i=1

log

(
exp (si,i/ω)∑

k →=i exp (si,k/ω) + exp (si,i/ω)

)

(1)
where si,j = ↑cvi ↑T ↑caj ↑ is the cosine similarity between
normalized representations, and ω is the temperature.



For the masked autoencoding (MAE) objective, the out-
put from the joint (concatenated) pass is used to predict the
original masked patches (m̂a

i , m̂
v
i ). The reconstruction loss

terms La
i and Lv

i compute the Mean Squared Error (MSE)
between predicted and original masked patches:
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The total reconstruction loss Lr averages the batch terms:

Lr =
1

N

N∑

i=1

(La
i + Lv

i ) (3)

The final learning objective L = εcLc + εrLr balances
contrastive alignment and masked reconstruction.

2.3. Improving Temporal Granularity

We argue that matching a full audio sequence to a single
random frame creates a weak contrastive objective for two
reasons: (1) frames from different scenes map to the same
audio if they’re from the same video, and (2) longer au-
dio segments often contain multiple audio classes (e.g., in
AudioSet), resulting in imprecise audio-visual correspon-
dences. To address this, we increase temporal granularity
by extracting frame-aligned audio segments, leveraging nat-
ural temporal alignment between modalities.
Temporal Alignment Process. For a video with T
frames and audio spectrogram of length S, we extract a
fixed-length spectrogram segment (slength) for each frame
i. We map frame indices to spectrogram positions using
scenteri = ↓i · S/T ↔, then extract a centered window from
sstarti = scenteri → ↓slength/2↔ to sendi = sstarti + slength, ad-
justing boundaries for edge cases.

2.4. Disentangling Joint Modality Encoding

In the original architecture [11], patches are optimized for
both contrastive and autoencoder objectives using a shallow
joint layer, creating competing optimization goals. We pro-
pose strategies to disentangle these objectives, enhancing
model performance.
Global Token Integration. Rather than aggregating patch
tokens for global representations [9, 11], we introduce ded-
icated global tokens (ga and gv) for the contrastive objec-
tive. This separation allows patch tokens to focus on re-
construction while global tokens handle cross-modal align-
ment. Global tokens optimize via contrastive loss while all
parameters update through both objectives.
Register Tokens. We incorporate register tokens to ad-
dress the issue of high-norm patch tokens functioning as
computation nodes rather than visual features [7]. This fur-
ther maintains the separation between reconstruction (patch
tokens) and contrastive objectives (global tokens), improv-
ing semantic capture and localization capabilities. These

register tokens are appended to uv and ua and processed
through the joint layer alongside global tokens.
Adaptation of the Joint Layer. With these additions, the
joint layer processes modality-specific representations more
effectively. The contrastive loss Lc now exclusively uses
global tokens, computing similarity as si,j = ↑gvi ↑T ↑gaj ↑.
This ensures the contrastive objective operates on high-level
representations while patch tokens handle reconstruction.
By disentangling these objectives, each task is optimized
independently, leading to improved performance across rep-
resentation learning and downstream tasks.

2.5. Downstream Tasks

2.5.1. Cross-Modal Retrieval

For cross-modal retrieval, we leverage multiple temporal to-
kens to capture fine-grained relationships between modali-
ties, rather than using single global tokens. We forward all
frames and corresponding audio segments through their re-
spective encoders and joint layer, obtaining global tokens
gv and ga after passing through the joint layer J with layer
normalizations LNv and LNa.
Similarity Calculation. For video-to-audio retrieval be-
tween query visual tokens Vq = {gv1 , ..., gvT } and target au-
dio tokens At = {ga1 , ..., gaT }, we construct a similarity ma-
trix S = VqA↓

t . The final similarity score is computed by
averaging the diagonal elements of S: Similarity Score =
1
T

∑T
t=1 st,t. This diagonal-focused approach emphasizes

temporally corresponding token pairs, promoting retrieval
based on both semantic and temporal alignment. For a batch
of videos, we compute similarity scores between all query-
target pairs to construct a ranking matrix R, with higher
scores indicating better matches.

2.5.2. Classification

For classification, we sample all frames and corresponding
audio segments from each video, effectively increasing the
batch size to B · T . We obtain global tokens gv and ga for
each temporal step t in video i, concatenate them to form a
sequence Ci of length T , and prepend a learnable CLS to-
ken to create C ↔

i = {CLS, Ci,1, . . . , Ci,T }. Our classifica-
tion head fcls (a two-layer transformer followed by a linear
projection) produces predictions ŷi = fcls(C ↔

i). We use bi-
nary cross-entropy loss for multi-class tasks (AudioSet) and
standard cross-entropy for single-class tasks (VGGSound).

2.5.3. Sound-Prompted Semantic Segmentation

For sound-prompted semantic segmentation, we extract the
global audio token ga and all visual tokens hv , then com-
pute the cosine similarity between each hv and ga. This
forms a similarity matrix L corresponding to the 14 ↗ 14
patch grid, which we upscale to the original 224↗224 frame
resolution to create the predicted localization map.
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AudioSet Eval Subset VGGSound Eval Subset

Baselines R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VAB-Encodec [23] 39.5 65.4 74.6 33.5 63.3 74.3 37.5 64.0 73.7 34.9 62.7 73.1

CAV-MAE [11] 16.1 38.6 49.3 14.7 35.3 45.9 9.5 22.6 32.4 8.3 23.8 32.4
CAV-MAEScale+ [11] 18.8 39.5 50.1 14.8 34.2 44.0 15.1 34.0 43.0 12.8 30.4 40.3
LanguageBind [28] 6.4 20.2 28.3 10.3 30.1 39.7 4.4 15.0 22.5 6.5 22.7 33.5
AVSiam [18] 19.7 → → 19.0 → → 17.6 → → 20.4 → →
ImageBind [10] 22.1 43.2 52.6 21.6 43.4 52.9 20.8 42.6 51.6 20.7 43.2 53.4

Ours 35.2 58.3 67.6 27.9 51.7 61.8 27.9 52.4 62.2 23.2 46.2 58.1

Table 1. Zero-shot retrieval results on AudioSet and VGGSound for Visual to Audio (V→A) and Audio to Visual (A→V) tasks. Our model
achieves state-of-the-art zero-shot performance across all retrieval metrics (R@1, R@5, R@10) on both datasets, surpassing baselines like
ImageBind and AVSiam. Fine-tuned VAB-Encodec scores are provided as an upper bound for comparison.

Baselines Pretrain Dataset AS20K→ VGGSound→

VAB-Encodec [23] AS-2M + VGGS 33.3 57.6

CAV-MAE [11] AS-2M 27.3 -
CAV-MAEScale+ [11] AS-2M 28.5 47.7
CAV-MAEScale++ [11] AS-2M 29.2 51.1
CAV-MAEScale+++ [11] AS-2M 25.3 51.6
MaViL [16] AS-2M 30 -

Ours AS-2M 30.5 52.7

Table 2. Comparing audio-visual classification performance using
linear probing. Numbers reported for AS20K are calculated using
mAP (mean Average Precision) and VGGSound with accuracy.

3. Evaluation

3.1. Downstream Tasks and Results

We evaluate our model on three downstream tasks: cross-
modal retrieval, classification, and sound-prompted seg-
mentation. Using the same pretrained model without
task-specific modifications, we compare against state-of-
the-art methods on AudioSet [8], VGGSound [4], and
ADE20K Sound [27]. Our evaluation assesses both repre-
sentation quality and the model’s ability to establish fine-
grained audio-visual correspondences.
Zero-shot Audio-Visual Retrieval. We evaluate bidi-
rectional retrieval (Visual→Audio and Audio→Visual) us-
ing Recall@k metrics (k={1,5,10}) on AudioSet and VG-
GSound test sets, following the protocol from CAV-MAE
[11] with cosine similarity for ranking. As shown in Ta-
ble 1, our model achieves state-of-the-art performance in
both retrieval directions compared to CAV-MAE [11], Im-
ageBind [10], AVSiam [18], and VAB [23], confirming that
our temporally consistent audio-visual correspondences and
disentangled contrastive MAE objective significantly im-
prove generalization to retrieval tasks.
Classification. We assess representation quality through
linear probing on AudioSet and VGGSound, freezing the
pretrained encoder and training only a classifier. We re-
port mean Average Precision (mAP) for AudioSet’s multi-

Baselines mAP ≃ mIoU ≃
DAVENet [14] 16.8 17.0
CAVMAE [11] 26.0† / 21.2 20.5† / 20.9
ImageBind [10] 18.3 19.1

Ours 22.6 22.7

Table 3. Sound-prompted semantic segmentation: Comparison
of sound localization methods on ADE20K Sound dataset [13].
†Original reported by [13] / our reproduction.

label task and accuracy for VGGSound’s single-label set-
ting. As shown in Table 2, our model achieves 30.5 mAP
on AudioSet and 52.7% accuracy on VGGSound, outper-
forming CAV-MAE variants and MaViL with AudioSet-2M
pretraining, demonstrating strong classification capabilities
alongside retrieval performance.
Sound-Prompted Image Segmentation. Following [13],
we evaluate cross-modal localization on ADE20K Sound,
where an audio prompt must guide segmentation of cor-
responding image regions. Performance is measured via
mean Average Precision (mAP) and mean Intersection over
Union (mIoU). Table 3 shows our model achieves 22.7
mIoU, comparable to prior self-supervised methods like
CAVMAE and ImageBind, while using the same backbone.

4. Conclusion

In this work, we introduced CAV-MAE Sync, an exten-
sion of the popular CAV-MAE framework that addresses
key challenges in audio-visual learning by treating audio
as a temporally aligned sequence, disentangling contrastive
and reconstruction objectives through separate global to-
kens, and enhancing spatial localization with learnable reg-
ister tokens. Our experiments demonstrate across AudioSet,
VGGSound, and ADE20K that these architectural improve-
ments offer a more effective and efficient approach to audio-
visual representation learning that harmoniously aligns tem-
poral and spatial aspects of audio and visual modalities.
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