
SAVGBench: Benchmarking Spatially Aligned Audio-Video Generation

Kazuki Shimada1,∗, Christian Simon2,∗, Takashi Shibuya1, Shusuke Takahashi2, Yuki Mitsufuji1,2
1 Sony AI, 2 Sony Group Corporation

Abstract
This work addresses the lack of generative models that

produce high-quality videos with spatially aligned audio,
a key aspect often overlooked in recent advancements. To
tackle this problem, we establish a new research direc-
tion in benchmarking Spatially Aligned Audio-Video Gen-
eration (SAVG). We propose three key components for the
benchmark: dataset, baseline, and metrics. We intro-
duce a spatially aligned audio-visual dataset, derived from
an audio-visual dataset consisting of multichannel audio,
video, and spatiotemporal annotations of sound events. We
propose a baseline audio-visual diffusion model focused on
stereo audio-visual joint learning to accommodate spatial
sound. Finally, we present metrics to evaluate video and
spatial audio quality, including a new spatial audio-visual
alignment metric. Our experimental result demonstrates
that gaps exist between the baseline model and ground truth
in terms of video and audio quality, and spatial alignment
between both modalities.

1. Introduction
Recently, generative models (e.g., diffusion models and

transformer-based models) have shown remarkable achieve-
ment in generating high-quality videos [8, 10, 5]. However,
there are only a few models targeting multimodal genera-
tion, especially samples with audio-visual elements [8, 13].
Furthermore, videos generated by current state-of-the-art
(SOTA) techniques, e.g., [10, 5, 8], fail to accurately rep-
resent real-world conditions, as they overlook spatial infor-
mation necessary for creating immersive content. Conse-
quently, the generated videos often lack the realism required
to spatially align audio with visual elements. The spatial
component of a video not only enhances realism for expe-
riential purposes but also provides a contextual understand-
ing of the video (i.e., sound source directions), which can
be used for various applications, e.g., virtual reality, world
simulation, and robot perception.

This work establishes a new research direction in
benchmarking Spatially Aligned Audio-Video Generation
(SAVG), illustrated in Fig. 1. We begin with stereo audio
and perspective video formats, widely used in media con-
tent. This area remains underexplored, with a lack of data
and standardized benchmarks. To advance this direction,
we introduce SAVGBench, a benchmark with three core
components: dataset, baseline, and metrics.
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Figure 1. An illustration of a spatially aligned audio-video gener-
ation (SAVG).

The essence for generating spatially aligned audio
and video is the training data, either used for training
from scratch or finetuning. In this work, we extend a
dataset called Sony-TAU Realistic Spatial Soundscapes
2023 (STARSS23) [9], which consists of spatially aligned
Ambisonics audio and 360◦ video data with oracle position
labels of sound events. This Ambisonics audio data, 360◦

video data, and position labels provide omnidirectional cov-
erage around the microphone array and camera, allowing us
to track the position of sound events on and off the screen
when we convert them into stereo audio and perspective
video. We create an audio-visual dataset containing stereo
audio and perspective video data, curated based on onscreen
and offscreen events.

The second is a baseline model. A key to building a
model with spatial alignment is learning a joint distribution
over both modalities. The design of MM-Diffusion [8] en-
ables such audio-visual joint learning. We propose a stereo
extension of the diffusion model to achieve joint learning
between stereo audio and video.

The third is how to evaluate generated audio and video.
We use the Fréchet video distance (FVD) [11] and Fréchet
audio distance (FAD) [4] metrics to assess video and audio
quality. To evaluate spatial alignment between video and
audio, we introduce a new metric based on detecting sound-
ing object positions in both modalities and measuring their
alignment. The metric relies on object detection [2] and
sound event localization and detection (SELD) [12].

In this work, our contributions are three-fold:
1. We introduce an SAVG dataset containing videos with

a perspective view and stereo audio, converted and cu-
rated from STARSS23.

2. We also propose a stereo audio-visual diffusion model
designed to address audio-visual joint learning with a
focus on spatial sound.



Figure 2. Examples of our proposed dataset with various indoor
environments and sound events.

3. We also introduce a set of metrics to assess the quality
of videos and spatial sound generated from a model. In
particular, we propose a spatial audio-visual alignment
metric using an object detector and a SELD model.

2. Proposed Dataset: SVGSA24
2.1. Overview

We create an audio-visual dataset named SVGSA24
that contains stereo audio and perspective video data, de-
rived from the STARSS23 dataset [9]. STARSS23 con-
sists of sound scene recordings with various rooms and
sound events, containing first-order Ambisonics (FOA) au-
dio data, the corresponding equirectangular video data, and
spatiotemporal annotations, i.e., classes, activities, and po-
sitions of sound events. We convert the STARSS23 data into
stereo audio and perspective video data, tracking the posi-
tion of sound events on the screen. We provide examples of
the proposed dataset in Fig. 2.

The SVGSA24 dataset features humans and musical in-
struments in indoor environments, including speeches and
instrument sounds. The audio data are delivered as stereo
audio with a 16 kHz sampling rate. The video data uses
a perspective view, ensuring that a video reflects sound
events in the audio. The video resolution is 256×256 with
padding. The length and frame per second (fps) rate are set
to 5 seconds and 4 fps, respectively.

SVGSA24 is split into the development and evaluation
sets. The development set contains 5,031 videos, totaling
about 7 hours. We release the development set to the public1

and keep the evaluation set for a challenge evaluation2. The
evaluation set serves as a target distribution to quantify the
quality of generated video and audio. In all sets, the ratio of
speech to instrument sounds is maintained at 2:1.

2.2. Data Construction
The SVGSA24 dataset is constructed as follows. First,

we extract 5-second videos every 0.5 seconds from the
STARSS23 data. Then, we convert the videos with the
equirectangular view and FOA audio to videos with a per-
spective view and stereo audio, using a fixed viewing angle
for the perspective view. While we keep the vertical viewing

1https://drive.google.com/file/d/14Fy6C_
N6BXymYKhXMxVbt7tHnZmVRMEd/view

2https://www.aicrowd.com/challenges/sounding-
video-generation-svg-challenge-2024/problems/
spatial-alignment-track

angle at 0 degrees, we change the horizontal viewing angle
by 10 degrees, sampling videos with a perspective view and
stereo audio. Finally, we curate videos that contain only
onscreen speech and instrument sounds. Note that the step
sizes (i.e., 0.5 seconds and 10 degrees) are for the develop-
ment set. We use different step sizes for the evaluation set
to keep the ratio of speech to instrument sounds at the same
ratio as the development set.

Data Conversion. Using a fixed viewing angle, we con-
vert the equirectangular view and FOA audio to a perspec-
tive view and stereo audio. FOA → stereo: According to
the viewing angle, we first rotate the FOA audio [7]. Then
we convert the rotated FOA audio to the stereo with a sim-
ple translation [12]: left = W+Y and right = W−Y ,
where W is the omnidirectional signal of the FOA au-
dio, and Y is the first-order horizontal (left-right) compo-
nent [12]. Equirectangular → perspective: We convert
the equirectangular video to a perspective video with the
same viewing angle as the audio, using a python library3.
We set the horizontal field of view to 100 degrees. We also
set the output height and width to 144 and 256, whose as-
pect ratio is 16:9. After the conversion, we add padding to
make a video with 256×256 resolution, to follow the pre-
trained super-resolution model’s resolution settings.

Data Curation. We curate videos that contain only on-
screen sound events. Including only onscreen events facil-
itates the evaluation of SAVG. During data conversion, we
also convert position labels in the equirectangular video to
position labels in a new perspective video. Using the posi-
tion labels in the perspective video, we investigate whether
an event is onscreen or offscreen.

We also curate only events from speech and instrument
classes, although the STASS23 dataset contains other sound
event classes. The speech and instrument classes are stably
detected by the object detector and SELD model, leading
to a stable evaluation of spatial alignment. In our prelimi-
nary experiments with the object detector, the person class
was well detected, while other classes, such as cell phone or
sink, were not reliably detected in the 256×256 resolution
videos. So, we considered using only human body-related
classes, i.e., speech, clap, laugh, footstep, and instrument
(as humans play instruments). On the other hand, when we
trained a SELD model with the human body-related classes,
the SELD model did not perform well in detecting the clap,
laugh, and footstep classes. Finally, we use the speech and
instrument classes to create our proposed dataset. We use
class labels for each event to investigate whether an event
belongs to these target classes.

Other Procedures. In addition to data conversion and cu-
ration, several steps are performed to produce the final ver-
sion of the proposed dataset. We remove videos with over-

3https://github.com/sunset1995/py360convert
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lapping events to focus on single source cases. We set a
threshold for the total length of sound events in a video
to 80% to ensure that the video contains sufficient sound
events. When the total length of sound events is less than
4 seconds in a 5-second video, we remove the video. We
apply a high-pass filter to all the audio data and amplify it
by 38 dB to enhance its sound event signals, stabilizing the
training of our baseline model. If the amplified audio of a
video is clipping, we remove the video.

3. Baseline Model: Stereo MM-Diffusion
A key to building a model with spatial alignment for

diffusion models is learning a joint distribution over audio
and visual modalities. In this work, we propose a stereo
channel extension of MM-Diffusion [8]. We use a structure
similar to that of MM-Diffusion. The learning mechanism
in MM-Diffusion implements joint learning between audio
and video. Thus, the gaps between generated outputs be-
tween the two modalities are narrowed down.

In our implementation, MM-Diffusion consists of two
separate branches for audio and video processing. In par-
ticular, the model encodes the source audio waveform us-
ing an audio encoder, yielding stereo audio with the size of
2 × C × T , where C and T are the feature channel and
corresponding time sequence. In the video branch, an en-
coder maps a video sequence of F frames to dimensions of
F × C × H × W , where H and W are height and width
of a frame. The outputs from both the audio and video
encoders are then integrated through a multi-modal atten-
tion module. This approach enables better alignment be-
tween audio and video, compared to training each modal-
ity independently. We follow the architectural setup of the
original MM-Diffusion [8], using 4 scales of MM-Blocks,
each comprising 2 standard MM-Blocks, along with an ad-
ditional downsample or upsample block.

As the model requires a huge amount of GPU memory,
we only deal with videos of size 64 × 64 to fit a sample
in a single GPU. In audio-visual generation with spatial
alignment, precise positioning of objects is essential. An
approach to obtaining object positions is to use an object
detector. However, at the 64 × 64 resolution, the sound-
ing objects are not visible, either to the object detector or
even to the human eye. Therefore, a super-resolution model
is required to upsample the video to 256 × 256 for better
visibility of objects. The super-resolution model uses an
identical architecture as in the guided diffusion model [1].

As the model is designed unconditionally, the trained
model could be used to generate a pair of audio-video sam-
ples. We observe that the DDPM [3], along with the MM-
Diffusion model, is slow to generate a sample. To expe-
dite the testing process, we use DPM Solver [6]. There is
a trade-off in quality, but this issue is not significant as we
only generate for a small resolution 64× 64. For the super-

Figure 3. An illustration of Spatial AV-Align metric with the de-
tected object (person class) and the detected sound event (instru-
ment class). The green box indicates the detected object using the
object detector. The blue box indicates the detected sound event
using the SELD model. The SELD result has a margin around the
estimated horizontal position. Its vertical range is set from the top
to the bottom as it does not estimate a vertical position.

resolution model, we still use DDPM to maintain the quality
of the generated video.

4. Evaluation Metrics
We introduce a set of metrics to assess the quality of

video and spatial audio generated from a model. To evaluate
the quality of audio-visual samples, we use the FVD [11]
and FAD [4] metrics to assess video and audio quality, re-
spectively. To measure spatial alignment between an audio
sample and the corresponding video sample, we propose a
new metric, Spatial AV-Align, which ranges from zero to
one, with higher values indicating better alignment.

The Spatial AV-Align metric evaluates spatial synchro-
nization between sound events in audio and objects in video.
The metric relies on prior works on object detection [2] and
sound event localization and detection (SELD) [12]. We
use the widely known object detector YOLOX [2] to iden-
tify objects in video. To detect and localize sound events in
audio, we prepare a stereo SELD model [12], which takes
stereo audio as an input to estimate each class’s activity and
horizontal position within the video per frame. The model
is trained with binary cross entropy and mean squared er-
ror using the development set of the SVGSA24 dataset. It
is evaluated using the evaluation set, achieving over 0.95 in
each class’s F-score. Please see Fig. 3 for an illustration of
a detected object (person class) and a detected sound event
(instrument class) from each input. Note that the SELD re-
sult has a fixed margin around the estimated value in a hor-
izontal position. The vertical range of a SELD result is set
from the top to the bottom as it does not have a vertical esti-
mation. To evaluate this metric using stably detected objects
or sound events, we focus on the person class in object de-
tection and speech and instrument classes in SELD, as in
the dataset section.

We explain the specific flow to compute the metric. We
begin by detecting candidate positions of sounding objects



Model FVD ↓ FAD ↓ Spatial AV-Align ↑
MM-Diffusion 1050.3 9.65 0.48
Ground Truth 572.05 3.70 0.92

Table 1. Evaluation results of the baseline and ground truth on key
metrics. FVD and FAD evaluate the quality of video and audio,
respectively, while our proposed Spatial AV Align metric indicates
the alignment between both modalities.

per frame within each modality separately. Note that the fps
for each modality is different: the object detector outputs at
4 fps, whereas the SELD model outputs at 10 fps. After-
ward, for a detected position in an audio frame, we verify if
an object is also detected at the same position in the closest
video frame to the audio frame. Specifically, we determine
if the SELD result overlaps an object detection result. If
there is an overlap, it is considered as a true positive; oth-
erwise, it is a false negative. We allow using object detec-
tion results across the adjacent video frames (i.e., from the
previous to the next) to account for temporal context. We
do not verify whether a detected object in a video frame
appears in the corresponding audio frame since the dataset
includes people who do not speak or play instruments. Fi-
nally, we compute a recall metric as the alignment score,
ranging from zero to one. This alignment score is defined
as TP/(TP + FN), where TP and FN indicate numbers
of true positives and false negatives, respectively.

5. Experimental Evaluation
In our experiments, we use the development set of the

SVGSA24 dataset to train the Stereo MM-Diffusion model
with its super-resolution model. The Stereo MM-Diffusion
is trained from scratch while the super-resolution model is
initialized with a pretrained model from the guided diffu-
sion model [1], which is pretrained on ImageNet. To fine-
tune the super-resolution model, we extract all videos as
frames and train the model on each frame. We set a batch
size to 4 with 8 NVIDIA A100 GPUs to train both models.
In evaluation, we use the evaluation set of SVGSA24 as a
reference to measure the quality of generated models.

We evaluate the quality and spatial alignment as shown
in Table 1. The MM-Diffusion baseline achieves the Spatial
AV-Align metric 0.48. Compared to the Spatial AV-Align
score on the evaluation set (i.e., Ground-Truth), this result
indicates potential for further improvement.

6. Conclusion
This paper presents a new benchmark for Spatially

Aligned Audio-Video Generation (SAVG). We propose
three key components for the benchmark: dataset, base-
line, and metrics. We introduce a spatially aligned audio-
visual dataset named SVGSA24, which enables us to train
and evaluate a model that generates videos with spatially
aligned stereo audio. We also propose an audio-visual dif-

fusion model focused on stereo audio-visual learning to ac-
commodate spatial sound. We also introduce a new met-
ric, Spatial AV-Align, which evaluates spatial alignment be-
tween audio and video using an object detector and a sound
event localization and detection (SELD) model. Our exper-
imental result shows that gaps exist between the baseline
model and ground truth regarding video and audio quality,
and spatial alignment between both modalities. This bench-
mark encourages future work in SAVG.
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