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Abstract

Audio-Visual Video Parsing (AVVP) is a challenging
task that aims to localize both uni-modal and multi-modal
events in a weakly-supervised setting, where only modality-
agnostic, video-level labels are available during train-
ing. While prior works seek to generate segment-level
pseudo-labels to better guide model training, their perfor-
mance is limited primarily by the lack of inter-segment de-
pendencies in the label generation process and the gen-
eral bias towards predicting events that are absent in a
segment. To address these issues, we propose a novel
approach called Uncertainty-weighted Weakly-supervised
Audio-visual Video Parsing (UWAV). Additionally, our in-
novative approach factors in the uncertainty associated
with these estimated pseudo-labels and incorporates a fea-
ture mixup based training regularization for improved train-
ing. Empirical results show that UWAV outperforms state-
of-the-art methods for the AVVP task on multiple metrics.

1. Introduction
Audio-visual learning has become a key focus in multi-

modal research. Various audio-visual learning tasks have
been widely explored, including audio-visual segmenta-
tion [14] and audio-visual event localization [3, 9]. How-
ever, many of these tasks assume perfect temporal align-
ment between audio and visual streams – an assumption that
frequently fails in real-world scenarios.

In this work we explore the task of Audio-Visual Video
Parsing (AVVP) [10], which aims to recognize all audio-
only, visual-only, and audio-visual events occurring in each
one-second segment of a video (see Fig. 1). From a ma-
chine learning standpoint, AVVP poses two key challenges:
(i) the audio and visual events that occur may not be tem-
porally aligned, e.g. a sound may be heard before its source
appears on screen and (ii) due to the high cost of segment-
level annotation, only modality-agnostic, video-level la-
bels may be available during training. Recent work ad-
dresses these challenges by generating richer pseudo-labels,
either at the video-level [1] or segment-level [3, 5]. No-
tably, VALOR [3] leverages large-scale pre-trained foun-
dation models (e.g. CLIP [6] and CLAP [12]) along with
ground-truth video-level labels to generate segment-level
pseudo-labels for each of the two modalities. Audio/Visual

segments (e.g. the audio corresponding to the segment in
question and the visual frame at the center of the segment)
are fed into CLAP/CLIP, one segment at a time, to generate
these pseudo-labels. While promising, these methods are
limited by the lack of a global video understanding during
the pseudo-label generation process.

To address this oversight and other shortcomings in
existing pseudo-label generation methods, we introduce
UWAV (Uncertainty-weighted Weakly-supervised Audio-
visual Video Parsing), a novel framework that generates
improved segment-level pseudo-labels for better training
of the inference module. UWAV uses transformer mod-
ules [11] pre-trained on a large-scale, supervised audio-
visual event localization dataset [2] to capture temporal
dependencies across video segments. Subsequently, we
use this pre-trained model to generate modality-specific,
segment-level pseudo-labels on a target, small-scale dataset
with only weak (video-level) supervision while factoring in
the uncertainty associated with these pseudo-labels. More-
over, UWAV addresses the critical class imbalance issue in
the pseudo-label enriched training data – where most event
classes are absent (i.e., they are negative) in any segment –
by introducing a class-balanced loss re-weighting strategy
to focus on learning positive events. These components to-
gether with a feature-mixup based training enable UWAV
to outperform state-of-the-art approaches on the benchmark
Look, Listen, and Parse dataset [10].

2. Related Works
To address the challenges of the AVVP task, [10] pro-

posed a Hybrid Attention Network (HAN) and a learnable
Multi-modal Multiple Instance Learning (MMIL) pooling
module. The HAN model facilitates the exchange of in-
formation within and across modalities using self-attention
and cross-attention layers, while the MMIL pooling mod-
ule aggregates segment-level event probabilities from both
modalities to produce video-level probabilities. Building on
this foundation, recent works advanced the field from the
following two perspectives. The first group of studies fo-
cuses on enhancing model architectures [15]. In particular,
[4] proposed the Multi-modal Grouping Network (MGN)
to explicitly group semantically similar features within each
modality, while [13] proposed Multi-modal Pyramid Atten-
tional Network (MM-Pyramid) to capture events of varying
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Figure 1: A weakly-supervised AVVP task example.
Events, considered in this task, might be uni-modal or
multi-modal. Even multimodal events, may not be tem-
porally aligned in the audio and visual modalities, e.g. the
cello might only be visible in the first few seconds but might
produce music, throughout the video.

durations by extracting features at multiple temporal scales.
Our proposed method is orthogonal to this line of research
and can be integrated with any of these backbones.

The second direction focuses on generating pseudo-
labels for improved training, either at the video-level [1] or
at the segment-level [3, 5]. Such methods generally utilize
the popular CLIP [6] and CLAP [12] features along with
ground-truth video-level labels to predict pseudo-labels for
each modality on a per-segment basis. PPL [5] uses the
HAN model itself to generate pseudo-labels by constructing
prototype features for each class and uses them for cluster-
ing, which however might not scale to smaller datasets. Dif-
ferently, our method captures inter-segment dependencies
for pseudo-label generation and scales to smaller datasets.

3. Preliminaries
Problem Formulation: The AVVP task aims to recog-
nize all visible and/or audible events in each one-second
segment of a video. Specifically, an audible video is split
into T one-second segments, denoted as {Vt, At}Tt=1. Each
segment is annotated with a pair of ground-truth labels
yvt ∈ {0, 1}C , yat ∈ {0, 1}C , where yvt denotes visual
events, yat denotes audio events, and C denotes the total
number of events in the pre-defined event set of the data.
However, (yvt , y

a
t ) are unavailable during training, instead

only the modality-agnostic, video-level labels y ∈ {0, 1}C
are available, where 1 indicates the presence of an event at
any time (either in the audio or visual stream or both) while
0 indicates an event’s absence in the video.

Pseudo-Label Based AVVP Framework: The Hybrid
Attention Network (HAN) [10] is a commonly used model
for the AVVP task. First, pre-trained visual and audio
backbones are used to extract features from the visual and
audio segments, respectively, which are then projected to
two d-dimensional feature spaces. The resulting visual
segment-level and audio segment-level features are pro-

vided as input to the HAN model. In the model, informa-
tion across segments within a modality and across modali-
ties is exchanged through self-attention and cross-attention
layers. Finally, a classifier, shared across both modalities,
transforms the visual segment-level features (resp. audio
segment-level features), obtained from the HAN model,
into visual segment-level logits {zvt }Tt=1 ∈ RT×C (resp.
audio segment-level logits {zat }Tt=1). Segment-level prob-
abilities {pvt }Tt=1, {pat }Tt=1 ∈ RT×C are then obtained by
applying the sigmoid function on {zvt }Tt=1 and {zat }Tt=1.

Since only video-level labels y are available during train-
ing, an attentive MMIL pooling module [10] is introduced
to predict video-level probabilities p ∈ RC :

p =
∑

m={v,a}

T∑
t=1

Wm
t ⊙ pmt , (1)

where Wm
t ∈ RC is the weight output by the learnable

MMIL pooling module for each modality and each segment,
and ⊙ denotes the element-wise product. The HAN model
is then optimized with the binary cross-entropy (BCE) loss
between the estimated video-level probabilities p and video-
level labels y: Lvideo = BCE(p, y).

4. Proposed Approach
At a high level, UWAV generates better segment-level

pseudo-labels to improve the training of the HAN model.
Moreover, UWAV factors in the uncertainty associated with
these pseudo-labels and addresses the imbalance in the
training data. Figure 2 shows an overview of UWAV.

4.1. Uncertainty-aware Pseudo-Label Synthesis
One major issue that plagues prior pseudo-label

generation-based works [3] is their inability to capture the
full context of the video when generating pseudo-labels
for individual segments. To plug this void, we pre-train
transformer modules [11] (one for audio, one for video in-
put) on a supervised, audio-visual event localization dataset,
enabling them to produce segment-level predictions with
awareness of the entire video context.
Pre-Training Pseudo-Label Generation Modules: Given
an audible video of duration T ′ seconds from the pre-
training dataset (e.g. the large-scale, supervised UnAV [2]
dataset), we split the video into T ′ one-second segments
{V ′

t , A
′
t}T

′

t=1, with corresponding audio-visual event labels
yavt

′ ∈ {0, 1}C′
, where 1 indicates the presence of an event

in both modalities and 0 its absence in at least one modal-
ity, while C ′ denotes the total number of event classes in
the pre-training dataset. Next, the video frame at the tem-
poral center of the visual segment is transformed into d1-D
visual features Gv

0
′ = {gv0,t′}T

′

t=1 ∈ RT ′×d1 with CLIP’s [6]
image encoder. These features are then encoded via a trans-
former [11] with L = 5 encoder blocks. Concurrently,
we convert each event category label in the pre-training
dataset into a textual event feature eCLIP

c
′ ∈ Rd1 by filling
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Figure 2: An overview of our UWAV framework.
Table 1: Comparison with state-of-the-art methods on the LLP dataset. Best performances are in bold.

Method Segment-level Event-level
A V AV Type Event A V AV Type Event

HAN [10] 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0
JoMoLD [1] 61.3 63.8 57.2 60.8 59.9 53.9 59.9 49.6 54.5 52.5
VALOR [3] 61.8 65.9 58.4 62.0 61.5 55.4 62.6 52.2 56.7 54.2

PPL [5] 65.9 66.7 61.9 64.8 63.7 57.3 64.3 54.3 59.9 57.9
CoLeaf [8] 64.2 64.4 59.3 62.6 62.5 57.6 63.2 54.2 57.9 55.6
LEAP [15] 62.7 65.6 59.3 62.5 61.8 56.4 63.1 54.1 57.8 55.0

UWAV (Ours) 64.2 70.0 63.4 65.9 63.9 58.6 66.7 57.5 60.9 57.4

Table 2: Accuracy of the generated pseudo-labels.

Method Segment-level
A V AV Type Event

VALOR [3] 80.5 61.7 55.7 66.0 74.6
PPL [5] 61.7 61.8 57.5 60.6 59.4

UWAV (Ours) 78.4 74.5 65.5 72.8 78.4

in the pre-defined caption template: “A photo of <EVENT
NAME>” with the corresponding event name and passing it
to CLIP’s text encoder. With the visual segment-level fea-
tures Gv

L
′ = {gvL,t

′}T ′

t=1 ∈ RT ′×d1 and the textual event
features ECLIP′ = {eCLIP

c
′}C′

c=1 ∈ RC′×d1 in place, we de-
rive visual segment-level logits ẑvt

′ ∈ RC′
and probabilities

p̂vt
′ as follows:

p̂vt
′ = Sigmoid(ẑvt

′), ẑvt
′ = ECLIP′ · gvL,t

′⊤. (2)

Similar operations are performed in the audio pseudo-
label generation pipeline. The raw waveforms correspond-
ing to the 1-second audio segments are transformed into d2-
D audio features Ga

0
′ ∈ RT ′×d2 with CLAP’s [12] audio en-

coder and fed into the audio transformer. The textual event
features ECLAP′ ∈ RC′×d2 are generated with the caption
template: “This is the sound of <EVENT NAME>” by
passing it through CLAP’s text encoder. Audio segment-
level logits ẑat

′ ∈ RC′
and probabilities p̂at

′ can then be
derived as: p̂at

′ = Sigmoid(ẑat
′), ẑat

′ = ECLAP′ · gat ′⊤.
Since the events occurring in the pre-training dataset

(UnAV) are audio-visual, we multiply the segment-level vi-
sual and audio event probabilities to obtain the event prob-
abilities and train the transformers with BCE loss:

Ltemp = BCE(p̂avt
′, yavt

′), p̂avt
′ = p̂vt

′ ⊙ p̂at
′. (3)

Uncertainty-weighted Pseudo-Label Training: With the
pre-trained pseudo-label generation modules in place, we
proceed to employ them on the target dataset for the AVVP
task. To do so, one approach is to follow VALOR [3],
to determine thresholds first and generate binary segment-
level pseudo-labels for both modalities. However, the gen-
erated pseudo-labels could potentially be noisy, leading to
occasionally incorrect training signals. To ameliorate this
problem, we propose an uncertainty-weighted pseudo-label
based training scheme by leveraging the confidence of the
pseudo-label estimation module (associated with the pre-
dicted pseudo-label) to weigh the training signal for the in-
ference module. This confidence score serves as a measure
of the pseudo-label generation module’s uncertainty of its
prediction. This may be represented as:
p̂vt =Sigmoid(ẑvt −θv)⊙y; p̂at =Sigmoid(ẑat −θa)⊙y, (4)

where ẑvt and ẑat are segment-level visual and audio log-
its (generated in the same manner as before) on the target
dataset, and θv ∈ RC and θa ∈ RC are the visual and audio
event thresholds. With the uncertainty-weighted pseudo-
labels in place, the inference module (HAN) can be trained
with the following uncertainty-weighted pseudo-label loss:

Lsoft = BCE(pvt , p̂
v
t ) + BCE(pat , p̂

a
t ). (5)

4.2. Class-balanced Loss Re-weighting

Besides the aforementioned challenges of the AVVP
task, most of the events in the event set are absent/negative



in any given segment of a video. As a result, the training of
the inference module is dominated by the loss from the neg-
ative events while the positive ones tend to get ignored. To
address this issue, we introduce a class-balanced loss re-
weighting strategy to re-balance the uncertainty-weighted
pseudo-label loss between the negative and positive events.
Specifically, the loss from the positive events is multiplied
by a weight proportional to the frequency of the segments
with the negative events in the pseudo-labels and vice-versa:
Lw−soft =

∑
m∈{v,a}

wm
pos · y · BCE(pmt , p̂mt ) +

wm
neg · (1−y) · BCE(pmt , p̂mt ), (6)

wm
pos =

∑N
i=1

∑T
t=1

∑C
c=1(1− ŷmi,t,c)

NTC
×W, (7)

wm
neg =

∑N
i=1

∑T
t=1

∑C
c=1 ŷ

m
i,t,c

NTC
, (8)

where N denotes the number of videos in the training set,
and W is a hyper-parameter set to 0.5.

For more improved training, we exploy a feature-
mixup [7] loss (Lmix) on the audio (Ga

L
′) and visual (Gv

L
′)

features, as well. In summary, the inference module is
trained on the AVVP task with the following losses:

Ltotal = Lw−soft + Lvideo + Lmix. (9)

5. Experiments
5.1. Experimental Setup
Dataset: We evaluate all competing methods on the Look,
Listen, and Parse (LLP) dataset [10] – the benchmark
dataset for the AVVP task. The dataset consists of 11, 849
video clips sourced from YouTube. Each clip is 10 sec-
onds long and represents one or more of 25 diverse event
categories, such as human activities, animals, and musical
instruments. We follow the official split [10] into training,
validation, and testing sets, for our experiments.
Metrics: Following the official protocol [10], all mod-
els are evaluated using macro F1-scores calculated for
the following settings: (i) audio-only (A), (ii) visual-only
(V), (iii) audio-visual (AV), (iv) Type@AV (Type), and (v)
Event@AV (Event). Type@AV is the mean of the A, V, and
AV event F-scores, while Event@AV is the F1-score of all
events regardless of the modality in which they occur. Eval-
uations are conducted at both segment- and event-levels.

5.2. Results
Comparison with Previous Methods: As shown in Ta-
ble 1, UWAV surpasses previous methods across almost
all metrics. Notably, we achieve a gain of 1.1% on
segment-level Type@AV F-score and a 1% improvement
on event-level Type@AV F-score, over our closest competi-
tor PPL [5]. When compared to other recently published
works, such as VALOR [3], CoLeaf [8] and LEAP [15],
UWAV outperforms them by up to 3% on both segment and
event-level Type@AV F-scores.

Accuracy of the Generated Pseudo-Labels: To evalu-
ate the efficacy of our pseudo-label generation pipeline,
we compare the accuracy of our generated pseudo-labels
against those obtained from competing methods (with pub-
licly available implementation) on the test set of the LLP
dataset. As shown in Table 2, our pseudo-label genera-
tion scheme generates more accurate segment-level pseudo-
labels compared to previous methods, by up to 6% on the
segment-level Type@AV F-score.

6. Conclusions
In this work, we propose UWAV to incorporate inter-

segment dependencies in the pseudo-label generation pro-
cess for the AVVP task. In addition, by factoring in the
uncertainty associated with these estimated pseudo-labels,
correcting for class imbalance, and training with a fea-
ture mixup strategy, UWAV achieves state-of-the-art perfor-
mance for the AVVP task.
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