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Figure 1: We propose BGM2Pose, a 3D human pose estimation that utilizes common background music.

Abstract

We propose BGM2Pose, a non-invasive 3D human pose
estimation method using arbitrary music (e.g., background
music) as active sensing signals. Unlike existing ap-
proaches that significantly limit practicality by employing
intrusive chirp signals within the audible range, our method
utilizes natural music that causes minimal discomfort to
humans. Estimating human poses from standard music
presents significant challenges. In contrast to sound sources
specifically designed for measurement, regular music varies
in both volume and pitch. These dynamic changes in signals
caused by music are inevitably mixed with alterations in the
sound field resulting from human motion, making it hard to
extract reliable cues for pose estimation. To address these
challenges, BGM2Pose introduces a Contrastive Pose Ex-
traction Module that employs contrastive learning and hard
negative sampling to eliminate musical components from
the recorded data, isolating the pose information. Addition-
ally, we propose a Frequency-wise Attention Module that
enables the model to focus on subtle acoustic variations at-
tributable to human movement by dynamically computing
attention across frequency bands. Experiments suggest that
our method outperforms the existing methods, demonstrat-
ing substantial potential for real-world applications.

1. Introduction

This paper addresses the task of estimating human poses
using ambient background music, without relying on spe-
cialized sensing signals. While existing vision-based meth-
ods achieve strong performance, these approaches face
challenges such as vulnerability to occlusion and low-light
conditions, as well as privacy concerns due to the capture of
identifiable features like faces.

Acoustic sensing is lighting-invariant and visual
privacy-friendly. Compared to other non-visual modalities
like mmWave or WiFi [3], sound is more universally
applicable across environments, including those with
sensitive equipment or during flights. Several methods
using acoustic signals for human state estimation have
been explored [1, 2]. Existing approaches utilize chirp
signals where the frequency monotonically increases or
decreases over time as the sensing source. However,
this method faces several limitations. First, chirp signals
typically span a wide frequency range, including audible
frequencies, making them highly uncomfortable for human
ears. Second, a general constraint in methods using chirp
signals is the requirement to use the exact same sensing
signal during inference as was used during training. Both
conditions highly limit the method’s applicability in



real-world scenarios.
Therefore, this paper addresses these challenges by

proposing a task of 3D Human Pose Estimation Based on
Non-Stationary Sounds (Fig. 1), which significantly ex-
pands the framework of non-invasive estimation of dynamic
human pose. In this task, we utilize standard background
music (BGM) as the sensing signal. With BGM, our system
significantly enhances comfort and practicality compared to
a noisy, chirp-based framework.

Utilizing everyday BGM as a sensing signal introduces
several critical challenges: (i) the phase- and amplitude
shifts caused by human motion are subtle, so the much
larger variations in background music readily mask these
pose-related cues. (ii) unlike chirp signals that sweep across
a wide range of frequencies, BGM has a limited frequency
band that changes over time (see Fig. 1). Since pose infor-
mation is observed as changes occurring within the BGM,
the model needs to selectively attend to the relevant portions
of the spectrogram. (iii) since this framework does not as-
sume specific predefined signals such as chirp, the method
needs to adapt to unseen acoustic signals for inference.

To address these challenges, we propose a novel model
called BGM2Pose. To overcome the first challenge, we in-
troduce a Contrastive Pose Extraction module (CPE mod-
ule). This module effectively promotes the extraction of
pose components while simultaneously excluding music
components by employing a contrastive loss within a shared
feature space. To address the second challenge of lim-
ited frequency bands and the third challenge of generaliz-
ing to unseen acoustic signals, we incorporate a Frequency-
wise Attention Module (FA module). This module uses an
attention mechanism to effectively identify the frequency
bands of the spectrogram containing human pose infor-
mation from the recorded signal, allowing it to extract
posture-estimation-relevant information even from limited
frequency bands or unseen music.

Since no existing work has addressed inferring 3D hu-
man poses with BGM, we create Acoustic Music-based
Pose Learning (AMPL) dataset, a large-scale original
dataset for this task. Through experiments using the pro-
posed dataset, we demonstrate that the proposed method
significantly outperforms existing methods.

2. Methodology
Our goal is to estimate the 3D human pose sequence

{pt}Tt=1 of a target subject standing between a micro-
phone and loudspeakers, given the recorded sound sequence
{st}Tt=1 and original music sequences {mi,t}Tt=1 emitted
from the i-th speakers. Here, T indicates the length of in-
put and output sequences and t means each timestep. We
assume a typical consumer speaker setup with two speakers
(i.e., right and left). Following [1], we also use one am-
bisonics microphone, which captures omnidirectional (w)

and x, y, and z components with four channels in B-Format.
The overview of our BGM2Poseis presented in Fig.2. In

the following sections, we detail the acoustic feature extrac-
tion, the proposed Frequency-wise Attention (FA) module,
and the Contrastive Pose Extraction (CPE) module.

2.1. Acoustic Feature Extraction

To generate the sequence of the audio feature vectors
as the input to our framework, we generate three types of
acoustic features. From the recorded sound signals st, we
extract the intensity vector Iintensity ∈ R3×b×T , including
three channels of (x, y, z)-directional components, and the
log-mel spectrum Slogmel ∈ R4×b×T . Here, b denotes the
number of frequency bins. Given the original BGM sound
signals mi emitted from the left and right speakers, we gen-
erate the log-mel spectrum Mlogmel ∈ R2×b×T . These fea-
tures are normalized before concatenation. In our imple-
mentation, we use b = 128 and T = 12.

To filter out the influence of BGM from our recorded
audio, we explicitly subtract the original music data Mi,
emitted from the i-th speaker, from the recorded audio data
S after standard normalization. By concatenating the inten-
sity vector and these difference features with two speakers,
we obtain the feature X with 4 + 4 + 3 = 11 channels in
total, which is fed into our network model.

2.2. Frequency-wise Attention Module

To effectively extract acoustic changes caused by human
posture in response to dynamic sensing signals, our method
proposes a Frequency-wise Attention Module (FA module).
Unlike TSP (chirp) signals designed to emit signals with
constant intensity across all frequencies within a specific
time frame, the frequency in BGM does not have periodic-
ity and varies over time (see Fig. 1 (left)). To extract pose-
related information captured by dynamically changing sens-
ing signals, we compute frequency-wise attention over the
input features at each time step.

The FA module takes acoustic feature X and the music
feature M as input. To aggregate local information of the
inputs, we independently apply 2D CNNs to both X and M.
Then, we obtain the recorded sound feature X′

t ∈ Rb×d

and the music feature M′
t ∈ Rb×d for each time index t,

where d is the latent dimension.
To capture frequency characteristics, we also add learn-

able shared frequency embedding F ∈ Rb×d to the afore-
mentioned two features, X̂t = X′

t+F and M̂t = M′
t+F.

Then, the attention mechanism is calculated as follows:

Attention(Qt,Kt,Vt) = softmax(
Qt ·KT

t√
d

)Vt, (1)

where Kt = M̂tW
K , Qt = X̂tW

Q, and Vt = X̂tW
V .

Here, WK , WQ, and WV ∈ Rd×d are the key, query,
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Figure 2: The overview of our framework for BGM–based 3D human pose estimation.

and value projection matrices, respectively. Following prior
works [1, 4], we also apply 2D CNNs, a reshaping layer, and
1D CNNs to output pose p with a size of 12 × 63, which
represents 3D ×21 joints for the 12 frames.

2.3. Contrastive Pose Extraction Module

To mitigate the influence of sensing music on the model’s
representations and to enable the extraction of pose in-
formation only, we propose a Contrastive Pose Extraction
module (CPE module) based on contrastive learning. This
module is designed to incur a high loss when the model’s
output is influenced by the sensing BGM. This module per-
forms multi-modal contrastive learning that maps human
poses and recorded audio into a common feature space.
When samples recorded with similar sensing music are in-
cluded in the same mini-batch, the learning process en-
courages separating them, thereby promoting the extrac-
tion of only pose information. Additionally, we propose
a novel sampling method called “BGM-based hard negative
sampling.” In this approach, similar recordings (and corre-
sponding pose data) obtained using the same sensing BGM
are included in the same mini-batch, imposing a more chal-
lenging setting for contrastive learning to further enhance
the model’s discriminative ability.

3. Human Pose Dataset with Music

For our task, we created a large-scale dataset, AMPL
(Acoustic Music-based Pose Learning dataset), which links
musical sensing signals with 3D human poses. These data
are captured in a classroom environment using motion cap-
ture (Mocap) and 16 cameras. This dataset consists of ap-
proximately 1.4 million pose-annotated frames, collected
from eight subjects and four BGM tracks (three ambient and
one jazz music). Additionally, for each of the music tracks,
casual clothing data from two individuals without pose an-
notations is also included to evaluate system practicality.

Table 1: Quantitative experimental results in the (a) single-
music and the (b) cross-music settings.

(a) Single-Music (b) Cross-Music

Method RMSE MAE
PCKh
@0.5 RMSE MAE

PCKh
@0.5

(↓) (↓) (↑) (↓) (↓) (↑)

Jiang et al. [3] 1.338 0.768 0.251 1.417 0.800 0.272
Ginosar et al. [4] 1.223 0.666 0.379 1.274 0.682 0.375
Shibata et al. [1] 1.090 0.574 0.468 1.110 0.556 0.499
Ours 0.923 0.453 0.573 1.036 0.494 0.570

Table 2: Quantitative experimental results with (c) cross-
genre setting (train=ambient, test=jazz).

Method RMSE (↓) MAE (↓) PCKh@0.5 (↑)

Jiang et al. [3] 1.418 0.849 0.221
Ginosar et al. [4] 1.326 0.727 0.360
Shibata et al. [1] 1.112 0.595 0.376
Ours 1.065 0.543 0.463

4. Experimental Settings

Baselines To our knowledge, no prior work has performed
3D human pose estimation using both music and recorded
data as inputs. We therefore compare our model to the fol-
lowing related approaches: (i) Jiang et al. [3] uses WiFi
signals and, like us, processes low-dimensional actively
sensed input; (ii) Ginosar et al. [4] uses acoustic signals,
but for gesture generation from speech-like audio; (iii) Shi-
bata et al. [1] is most relevant, using acoustic signals for 3D
pose estimation, but with chirp-based active sensing. Please
note that we trained these baselines on AMPL dataset with
matched I/O layers for fair comparison.

Evaluation Metrics. Our quantitative metrics are as fol-
lows: root mean square error (RMSE), mean absolute error
(MAE), and percentage of correct key point with a threshold
of 50% for the head–neck bone link (PCKh@0.5).



Table 3: Ablation study in the setting (a), (b).

(a) Single Music (b) Cross Music

Method RMSE MAE
PCKh
@0.5 RMSE MAE

PCKh
@0.5

(↓) (↓) (↑) (↓) (↓) (↑)

Ours 0.923 0.453 0.573 1.036 0.494 0.570
w/o CPE module 0.945 0.481 0.531 1.024 0.501 0.547
w/o BGM Hard Negative 0.928 0.457 0.566 1.065 0.506 0.559
w/o FA module 1.025 0.509 0.536 1.210 0.593 0.512
w/o BGM conditioning 0.970 0.484 0.537 1.075 0.522 0.543

5. Experimental Results

5.1. Comparison with Other Baselines

We evaluated our proposed method against the baseline
models within the following three scenarios: (a) a single-
music setting, wherein the same ambient BGM was used as
the acoustic source for both training and testing; (b) a cross-
music setting, in which two ambient and one jazz BGM
were used for training and the remaining ambient music
was used for testing only; and (c) a cross-genre setting, in
which all ambient tracks were used for training and one jazz
BGM was used for tesing. These accuracies were obtained
by computing the average performance on unseen subjects
using K-fold cross-validation and 3-seed averaging.

Table 1 summarizes the quantitative results in both the
single- and cross-music settings. We can see that our pro-
posed method outperformed the previous models in all met-
rics under both settings, highlighting that it has a strong ca-
pacity to capture 3D human poses based on music sounds.
Note that the values in the table are normalized, with the
hip-spine distance set to 1. Table 2 shows the results when
three ambient music tracks are used for training while jazz
music is used for testing. Jazz exhibits more drastic changes
in pitch and volume compared to ambient music, and it in-
cludes silent intervals during which the sensing signal does
not work. Consequently, we observe a decrease in accuracy
in PCKh@0.5 compared to ambient music evaluation (Ta-
ble 1). However, even so, our method records significantly
higher accuracy than existing methods, suggesting that our
approach is robust across different music genres.

5.2. Ablative Analysis

We investigated the effects of our main technical con-
tributions, i.e., the CPE module and the FA module. For
the CPE module, we also prepared a setting in which mini-
batches are created randomly without using proposed hard
negative sampling. Furthermore, to demonstrate the ef-
fectiveness of using playback music information, we con-
ducted evaluations while removing the playback BGM
channels from the inputs and calculated FA module based
on self-attention. Table 3 shows that both our proposed
modules contributed to improving the estimation accuracy.
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Figure 3: The qualitative results in the cross-music setting
with the subjects wearing plain clothes.

5.3. Evaluation with the In Plain Clothes Dataset

Fig. 3 shows the qualitative results under the cross-music
setting with the subject wearing plain clothes. As the yellow
arrows highlight, we can see that our method significantly
reduced false predictions, compared to the baselines.

6. Conclusion
This paper proposes BGM2Pose, a human 3D pose esti-

mation that uses BGM as active sensing signals. Unlike ex-
isting methods that utilize chirp signals which is uncomfort-
able for humans, our approach uses everyday music, offer-
ing greater flexibility and practicality. This task is challeng-
ing because the amplitude and pitch of the signals vary over
time, and the human pose clues in recordings are masked
by music changes. Moreover, the effective frequency range
of BGM is limited. Therefore, we proposed a novel model
incorporating the Frequency-wise Attention Module and the
Contrastive Pose Extraction Module to focus on the changes
in the measurement sounds caused by human pose varia-
tions at each moment. Our method achieves accurate 3D
pose estimation under diverse conditions, including unseen
music and subjects in casual clothing, highlighting the po-
tential of more practical sound-based human sensing.
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