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Figure 1. Crowd counting on low-quality images. From left to right: input image with low illumination and strong noise,
ground truth density map, predicted density map using both auditory and visual information and predicted density map only
using visual information.

1. Introduction

Crowd counting has recently been a hot research topic [9,
13, 12], as it can benefit a wide range of applications,
to name a few, safety monitoring, public space design,
and disaster management. Consequently, crowd counting
techniques, particularly computer vision-based approaches,
have received increased interest. The success of current
state-of-the-art visual crowd counting models can be at-
tributed to the development of convolutional neural network
(CNN) architectures that aim at learning better visual rep-
resentations from images for this task [7, 8]. Albeit suc-
cessful, vision-based crowd counting approaches could fail
to capture informative features in extreme conditions1 (c.f.,
Figure 1).

Investigations in the field of neurobiology show that
human perception usually benefits from the integration of
both visual and auditory information [15], e.g., lip reading,
where correlations between lip movements and speech pro-
vide a strong cue for linguistic understanding [1]. This gives
us an incentive that ambient sound could be an important
cue for identifying the number of people in a scene. This
hypothesis is in line with our daily experiences: the louder
we perceive the ambient sound to be, the more people there
are. However, incorporating the ambient sound into a vi-
sual crowd counting model and its contributions to this task
still remain underexplored in the community. On the other
hand, with the now widespread availability of smartphones,
digital cameras, and video surveillance equipments, audio-
visual data have been accessible at a reasonable cost. This
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1In this paper, the extreme condition refers to a) low resolution, b)

noise, c) occlusion, and d) low illumination.

enables us to explore the topic in this paper.
In this paper, we are interested in a novel task, audio-

visual crowd counting. We pose and seek to answer the
following questions:

• Is combining features coming from visual and audi-
tory modalities better than only using visual features
for crowd counting in extreme conditions?

• How do audiovisual crowd counting results vary un-
der different illumination, noise, and occlusion condi-
tions?

• How do we impose the audio information for effec-
tively assisting the visual perception, i.e., how to fuse
both modalities?

2. Dataset
To jointly utilize ambient sounds and visual contexts for

crowd counting, an auDIoviSual CrOwd dataset (“DISCO”
for short) is constructed.

Data Collection. To simultaneously capture the visual
image sequences and record the audio signals, we use four
video cameras, HDR-CX900E produced by Sony Corpo-
ration. In the collection process, we simulate the view of
a surveillance camera and record crowds in some typical
scenes at different time. As a result, we collect 248 video
clips, around 20 hours and 385 GB data in total. Specifi-
cally, the resolution of each video is 1, 920×1, 080, and the
frame rate is 25. For the audio information, the DV record
2-channel stereo with the sample rate of 48, 000.

From these raw data, 1,935 images and audios from var-
ious typical scenes are selected to construct our proposed



Figure 2. Examples of the DISCO dataset. We collect images and ambient sounds from a wide range of scenes, including
indoor, outdoor, day- and night-time. For each image, an audio signal of one second is clipped from raw ambient sounds as
auxiliary information. Raw ambient audio signals and their corresponding spectrograms are shown at the right bottom of
each example.

dataset. For an image at t in a video, we extract its corre-
sponding audio signals from t − 0.5s to t + 0.5s. Some
visual examples and their corresponding audio waveforms
are shown in Figure 2.

Data Characteristics. DISCO consists of 1, 935 crowd
images, a total of 170, 270 instances annotated with the
head locations. The average, minimum and maximum num-
ber of people for each image are 87.99, 1 and 709, re-
spectively. Compared with some traditional crowd count-
ing datasets [17, 5], the proposed DISCO dataset are the
first to record ambient sounds as auxiliary information of
crowd scenes to reduce defects of single-vision sensors. In
addition, we capture images at different times in one day to
ensure their various illuminations (see Figure 2).

In a summary, DISCO dataset has three advantages com-
paring with others: 1) both audio and visual signals are pro-
vided; 2) cover different illuminations; and 3) a large variety
of scenes are considered.

3. Our Approach
3.1. Overview

In order to benefit crowd counting with ambient sounds,
a novel AudioVisual Counting (AVC) network is designed
and consists of three modules (see Figure 3): (1) visual fea-
ture extraction, (2) audio feature extraction, (3) audiovisual
feature fusion. Notably, comparing with traditional meth-
ods [2, 5, 17], where only visual information is employed,
our network is characterized by the second and third mod-
ule. To imitate such human capacity that we can perceive
the scene by hearing, we introduce an audio module into
the traditional counting framework, resulting in AudioVi-
sual Counting (AVC) model.

3.2. Visual Feature Extraction

Similar to CSRNet [7], we employ the first ten layers of
VGG16 [14] as the front-end CNN VCNN to extract visual
features. Given an RBG image I with a spatial size of W ×
H , visual features vfeat can be extracted with the following

equation:
vfeat = VCNN (I), (1)

where vfeat ∈ RC×W
8 ×H

8 , and C denotes the number of
channels, i.e., 512.

3.3. Audio Feature Extraction

In this work, we use Log Mel-Spectrogram (LMS) for
representing audio and CNN arch for modeling due to fol-
lowing considerations: 1) The audio feature of LMS has
been widely used in CNN-like neural model for sound
event detection and shown noticeable performance[3], and
2) Stoter et al.[16] demonstrate that using spectrogram-like
feature can achieve comparable performance to the conven-
tional MFCC in the counting task and much simpler. Even
so, we still provide some discussions about different audio
features and modeling settings in the experiments.

Given a raw audio signal Araw = {a1, a2, · · · , aT }, we
first sub-sample Araw at 16kHz, and then employ short-
time Fourier transform (STFT) using Hann window with the
window size of 400 and a hop length of 160, to generate a
98 × 257 time-frequency map. Afterwards, Mel filter bank
is applied, and a 96 × 64 representation Aspec can be then
obtained for each raw audio signal. Finally, we utilize a
VGG-like deep convolutional neural network [3] to extract
audio features afeat as follows:

afeat = ACNN (Aspec), (2)

where afeat ∈ RC×Wa×Ha , and C = 512.

3.4. Feature-wise Audiovisual Fusion

To effectively fuse both audio and visual information in
crowd counting, we introduce a feature-wise fusion module
which aims at adaptively adjusting visual feature responses
with transformed audio embeddings. Concretely, based on
the extracted audio features, two feature-wise parameters γ
and β are learned to model such cross-modal influence in
terms of multiplicative and additive aspects, respectively.
The formula is shown here:
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Figure 3. Overview of the proposed AudioVisual Counting model (AVC). The proposed AVC model is composed of three
modules (1) visual feature extraction, (2) audio feature extraction, and (3) feature fusion. Note that our AudioVisual
Counting framework can be applied to any vision-based counting model.

vl+1 = Fl
(
γl �DlCNN (vl) + βl

)
, (3)

where vl ∈ RCl×Wl×Hl indicates outputs of the lth fea-
ture fusion block, DlCNN denotes the lth dilated convolu-
tion layer, Fl and � suggest the activation function and
element-wise multiplication, respectively. Notably, l ranges
from 0 to 6, and v0 = vfeat. Normally, γ and β can be
learned via different affine transformations, such as single
or multiple neural networks. In this work, we simply use
fully-connected layers to learn γl and βl with the following
two equations:

γl = FCγl (AvgP (afeat)), (4)

βl = FCβl (AvgP (afeat)). (5)

In these two equations, AvgP represents average pooling,
and γ, β ∈ RCl+1 . To implement Eq.3, γl and βl are tiled to
match the size of visual features before fusion, see Figure 3.
L2 norm is selected as the loss function in our experiments.

4. Experiments
4.1. Experimental Settings

First, we split our DISCO dataset into three sets: 200 im-
ages for validation, 300 images for testing, and the remain-
ing 1,435 images for training. To obtain the ground-truth
density maps, we convolve each binary annotations (cen-
ters of human heads are one, and the others are zero) with a
15× 15 Gaussian kernel K ∼ N (0, 4.0).

In the training phase, we select Adam as the optimizer
and set its parameters as recommended. The learning rate
is initialized as 1e − 5 and decays by 0.99 every epoch.
To alleviate overfitting, weight decay is employed with a λ
of 1e-4. It is noteworthy that except for those with a low

resolution of 128 × 72, we resize images into 1024 × 576
to reduce computational resources and time. In our experi-
ments, the batch size is set as 4, and the maximum training
epoch is 500. To fairly compare all models, we report their
performances on the test split.

Regarding the audio CNN, we use VGGish [3] pre-
trained on audioSet [6] and discard its last three fully-
connected layers, resulting in a 6-layer CNN. For the visual
front-end CNN, we use the first ten layers of VGG16 [14]
pre-trained on ImageNet. In our feature fusion blocks, we
employ dilated convolutions with the kernel size of 3 and
the dilation rate of 2 to enlarge the receptive field. Simi-
lar to CSRNet [7], we stack 6 fusion blocks and up-sample
outputs with a factor of 8 to yield density maps of full reso-
lution.

4.2. Baselines and Evaluation Metrics

To investigate the task of audiovisual crowd counting,
we compare our audiovisual counting model with several
vision-based models, such as MCNN [17], CSRNet [7],
SANet [2], and CANNet [8]. Notably, we use one of the
state-of-the-art models, CSRNet [7], as the backbone of
our audiovisual counting model, leading to the proposed
AudioCSRNet. The architecture of our proposed network
is shown in Figure 3. To assess the performance of each
model, we employ Mean Absolute Error (MAE) and
Mean Square Error (MSE) scores.

4.3. Experimental results

To evaluate the performance of our AudioCSRNet in
crowd counting under extreme conditions, we conduct ex-
periments on two extreme scenarios: 1) the quality of im-
ages is very low, and 2) occlusion exists in images. Table 1



Table 1. Performance on low-quality images. For Gaussian noise, the standard deviation denoted by σ is a fixed value. While in low
illumination&Gaussian noise, the illumination decay rate r and standard deviation σ of Gaussian noise are random values and R and B
represent the hyper-parameters to compute r and σ, respectively. The bold numbers denote the best performance and the blue numbers
represent the second best performance.

Model &
Image Quality

Low resolution Gaussian noise Low illumination&Gaussian noise Avg. Score
128× 72 σ = 25/255 σ = 50/255 R = 0.2, B = 25 R = 0.2, B = 50

MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓
MCNN [17] 60.17 89.35 53.47 84.04 53.92 84.04 70.72 96.11 70.58 96.11 61.77 89.93
CANNet [8] 22.16 39.60 13.31 27.23 14.20 28.04 26.03 49.11 33.14 58.27 21.77 40.45
CSRNet [7] 17.14 30.64 13.79 28.01 14.55 29.15 35.78 62.76 45.88 75.40 25.43 45.19

AudioCSRNet 16.88 31.46 13.07 27.45 13.70 28.67 25.06 51.58 27.33 45.16 19.21 36.86
PSNR [4] ↑ 22.27 30.05 24.13 9.94 10.43 —

BRISQUE [11] ↑ 29.75 82.19 69.06 56.08 66.39 —

report results on the first scenario, where models are com-
pared on three low-quality conditions: low illumination,
low resolution, and strong noise. Specifically, we mimic
images taken in the dark environment with the method pro-
posed by [10]. To quantitatively measure the quality of
input images, here we calculate PSNR [4] and BRISQUE
[11]. Notably, images with high PSNR and BRISQUE
scores are regarded as high-quality ones.

Comparisons between AudioCSRNet and its counter-
part, CSRNet, directly demonstrate that introducing audio
information can benefit crowd counting, in particular on
lower-quality images. Besides, on images with low resolu-
tion (PSNR is 22.27) and Gaussian noise (PSNR is 30.05
and 24.13), AudioCSRNet surpasses all competitors and
achieves the lowest MSE in comparison with visual mod-
els as well. Another advantage of introducing audio into
crowd counting is that audiovisual models show strong ro-
bustness on variant scenarios, e.g., AudioCSRNet obtains
the lowest average MAE and MSE score (19.21 and 36.86).
Also, we show the density map predicted by CSRNet (d)
and AudioCSRNet (c) in Figure 1.

Another scenario that we study is occlusion, where an
input image is randomly occluded by a black rectangle. Fig-
ure 4 shows results of CSRNet and AudioCSRNet, and we
can see that performances of them on occluded images dra-
matically decrease. Moreover, trends of curves in Figure
4 demonstrate that AudioCSRNet can often achieve lower
MAE and MSE scores.

5. Conclusion
In this paper, we investigated a novel audiovisual task,

that imposes audio information for assisting visual crowd
counting in extreme conditions. We developed an audio-
visual crowd counting dataset to facilitate progress in this
field, which covers different scenes in different illumina-
tions. Meanwhile, a feature-wise fusion model was devel-
oped to achieve audiovisual perception for crowd counting.
Extensive experiments were conducted to explore audio ef-
fects in different visual conditions. We found that introduc-
ing audio is able to benefit crowd counting, in particular
in the extreme conditions, such as low illumination, strong
noise, low resolution and occlusion.
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Figure 4. Performance of CSRNet and AudioCSRNet on
occluded images. Occlusion rate Or = 0 represent original
images and Or = 1.0 means there is no visual information.
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