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Abstract

Learning a mapping between two unrelated domains-
such as image and audio, without any supervision is a chal-
lenging task. In this work, we propose to use a distance-
preserving generative adversarial model to translate im-
ages of human faces into an audio domain. The audio
domain is defined by a collection of musical note sounds
recorded by 10 different instrument families (NSynth [5])
and a distance metric where the instrument family class
information is incorporated together with a mel-frequency
cepstral coefficients (MFCCs) feature. To enforce distance-
preservation, a loss term that penalizes the difference be-
tween pairwise distances of the faces and the translated
audio samples is used. Further, we discover that the dis-
tance preservation constraint in the generative adversar-
ial model leads to reduced diversity in the translated audio
samples, and propose the use of an auxiliary discriminator
to enhance the diversity of the translations while using the
distance preservation constraint. We also provide a visual
demonstration of the results (video demo) and numerical
analysis of the fidelity of the translations.

1. Introduction
There has been a lot of work in attempting to find a

meaningful mapping between two different domains with-
out any supervision - i.e. only unordered and unpaired sam-
ples from the two domains are given. However, most of
them are often limited to a task of mapping between two vi-
sual domains such as image-to-image translation [6, 9, 20],
where the learner takes an image in one domain and maps it
into another pixel domain with its content or style changed
to be similar to that of the target samples. In this work,
we focus on finding a mapping between two highly unre-
lated domains - image and audio. More precisely, we want
to find a meaningful mapping that links images of human
faces into musical sounds, while the measure of similar-
ity between face images is consistent with the one between
translated audio samples so that visually dis/similar face im-
ages can be mapped into audio samples that sound percep-
tually dis/similar to each other. This could be used to aid
those with a visual impairment by encoding the visual in-
formation (e.g. facial appearance) into the audio domain,
which allows them to perceive this information using their
ears [15, 11].
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Figure 1. Our proposed image-to-audio translation model’s struc-
ture.

To find a meaningful mapping between such unrelated
domains, we adapt the distance-preserving technique [1] to
map images of faces into an audio domain defined by a col-
lection of musical note sounds recorded by 10 different in-
strument families (NSynth [5]), and a new audio metric we
designed, where the instrument family class information is
incorporated together with the MFCCs, as a result, musical
samples of the same instrument family with similar timbre
have small distances and vice versa. Further, our model also
demonstrates that, when translating between such unrelated
modalities, there is a trade-off between the variety of the
translations (i.e. audio), and the preservation of geomet-
ric information. To address this problem, we propose using
an auxiliary discriminator in a way that it further enforces
that the model outputs sounds which fit into the target audio
dataset in the new designed audio metric space.

2. Method
Our method employs the distance-preserving mapping

technique [1] in the GANs framework: We first find a
feature embedding model that embeds faces into a metric
space, where the distance corresponds to a measure of face
similarity. This embedding model can be obtained by re-
fining a convolutional neural network that is pretrained for
the face recognition task on a large-scale face dataset (VG-
GFace2 [2]), where the network captures information about
the facial appearance to successfully classify the face identi-
ties. We then train a deep generative model by using a GAN
approach [7] that takes the face features from that embed-
ding space 1 and synthesizes raw audio waveforms that fit
into the distribution of sounds specified by a given target
dataset (i.e. musical notes of NSynth dataset [5]). Two dis-

1Typically GANs take as input a latent vector sampled from a Gaussian
or uniform distribution. For our task, we are using the pretrained feature
embedding space as the input latent.

https://www.dropbox.com/s/the176w9obq8465/face_to_musical_note.mov?dl=0


criminators are simultaneously trained with the generator,
whose task is to predict whether the generated output is real
or fake. See the overview of our model’s structure in Fig. 1.

Metric Preservation Constraint: To enforce the dis-
tance preservation constraint, we add a metric loss term
(Eq. 1) to the GAN’s adversarial loss, which computes the
difference of pairwise distances of the face features and fea-
tures of the generated audio samples (‘Pairwise distance
loss’ block in Fig. 1).

Lmetric =

1

Z

∑
i<j
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σy

∣∣∣∣
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whereZ is the number of possible (unordered) pairs of sam-
ples in the training mini-batch, f(x) is the face embedding
feature of the input face image x, φ(y) denotes our audio
embedding feature of the translated audio output y. The
standardization parameters, (µx, σx) and (µy , σy), are de-
rived from source (VGGFace2) and target (NSynth) datasets
respectively and are the mean and standard deviation of
pairwise distances of samples from within each respective
dataset.

Audio Metric: The audio feature is computed by a com-
bination of a pretrained audio feature embedding model and
MFCCs (The ‘Audio feature embedding’ block in Fig. 1):
We first train a feature embedding model for audio that
maps raw audio waveforms into a compact Euclidean space
where the distance directly corresponds to a measure of au-
dio similarity. This is done by using the triplet loss func-
tion [18] that aims to separate the positive sample from the
negative sample by a distance margin, where the positive
and negative are determined by the annotated instrument
family class label of the NSynth dataset. As a result, audio
samples that have the same musical instrument timbre are
mapped into features with small distances and vice versa.
To further incorporate perceptual notions of distance into
the audio metric, the Mel-frequency cepstral coefficients
(MFCCs) [19] of the audio are computed and concatenated
with the learned audio features. Fig. 2 (b) shows the au-
dio metric space of NSyth samples. For the visualization,
we mapped them into a 2D space by tSNE [10]. Each blob
represents an NSynth sample’s feature vector and is color-
coded by the instrument family (bass, brass, flute, guitar,
keyboard, mallet, organ, reed, string, and vocal).

Enhancement of the Sample Variety: The adversarial
loss enforces that the generated audio fits into the given tar-
get audio dataset. Despite this, when using a metric preser-
vation constraint, we observe decreased variety in the gen-
erated audio. We verify this perceived lack of variety using
Frêchet Inception Distance (FID) [8] 2. Our FID score re-

2FID is known to be sensitive to the variety of the generated samples.

Table 1. The quality measure scores of Frêchet Inception Distance
(FID, lower is better) and Inception Score (IS, higher is better) by
a pitch classifier and a family classifier, the distance preservation
measure score by Pearson Correlation (PC, higher is better), and
the clustering measure score by Silhouette Value (SV, higher is
better).

Pitch Family

Method FID IS FID IS PC SV

Baseline 21.84 56.27 51.02 4.59 0.090 -0.0051

+metric preservation 46.69 53.18 90.99 3.98 0.683 0.0112

+aux. discriminator 25.52 54.97 53.98 5.89 0.432 0.0256

sults and a visual check can be seen in Table 1 and Figure 2
respectively. To address this, we add an auxiliary discrimi-
nator as an additional adversarial criterion that can support
the main discriminator in a way that it further encourages
the generative model to output audio samples that fit into
the distribution of the target audio dataset. Note that, unlike
the main discriminator, we attach this second discrimina-
tor on top of the hybrid MFCC-learned audio embedding
feature (Fig. 1 ‘Audio feature embedding’ block) to predict
the real/fake by processing the audio features rather than
the raw audio signals. As we will see in the next section,
this helps the generative model output audio samples that
are spread over the distribution of real audio samples in our
audio metric space (Fig. 2 (b) third row). Furthermore, our
additional discriminator has a much simpler and more eco-
nomical architecture than the main discriminator, consisting
of five fully connected layers with dimension 128, 64, 32,
16, and 1.

3. Results

In this section, we detail an ablation study performed
on our proposed model by adding sequentially the metric
preservation loss and then the second discriminator to the
baseline to see the effect of each constraint. See Table 1.

The baseline model is based on WaveGAN [3]. It is
trained to, given a 512-dimensional VGGFace2 feature vec-
tor, generate a raw audio signal of length 8192 that fits into
the distribution of NSynth training samples. To improve
the quality of the generated sounds, we employ a state-of-
the-art stabilization technique, spectral normalization [12].
Further, our baseline model is conditioned by a ‘pitch’ label
given by the NSynth dataset (i.e. our model is a conditional
GAN similar to that described in [4]) but with conditional
batch normalization layers [14] in the generative network
and a projection layer at the end of the discriminator as in
[13].

Table 1 shows four evaluation metric scores: 1) Pear-
son product momentum correlation (PC) between L2 pair-
wise distances of the samples in the source metric and the
corresponding translated samples in the audio metric. The
Pearson correlation has a value between +1 and -1, where



1 is perfect positive linear correlation. 2) Silhouette value
(SV) to inversely check whether the clusters are preserved
in the source metric space. More precisely, we first assign
the class label to each translated audio clip based on its clos-
est cluster of “real” audio samples in the audio metric space.
I.e. a translated audio sample which lies within or close
to the ‘string’ cluster will be assigned the ‘string’ family
label. Then, we measure how well the corresponding un-
translated samples are grouped by their assigned class labels
in the source metric space (Fig. 2 (a) Face metric space).
To measure this quantitatively, we use Silhouette value. A
method which was proposed by [16] and has been used
as a means for clustering evaluation. 3) The well known
Inception Score (IS) [17] and Frêchet Inception Distance
(FID) [8] to measure the quality of the translated audio sam-
ples.

First, the baseline model achieves the FID and IS scores
of 21.84 (51.02) and 56.27 (4.59) respectively by our pre-
trained pitch (family) classification model 3. With the dis-
tance metric preservation constraint on the model, the Pear-
son Correlation (PC) score increases from 0.090 to 0.683.
This demonstrates that our metric preservation loss helps
the model preserve the geometric structure of the face em-
beddings in the target audio metric space, however, we also
observed a reduced quality in the samples, i.e FID increases
from 21.84 (51.02) to 46.69 (90.00), and IS decreases from
56.27 (4.59) to 53.18 (3.98). Our visualization of the trans-
lated audio samples in the audio metric space also demon-
strates this. See Fig. 2 (b). The red dots represent the trans-
lated audio clips from a subset of 20k randomly sampled
face images from the VGGFace2 train set and the blobs are
the NSynth real audio samples. The first two top figures
correspond to the baseline and the our proposed model with
metric preservation loss. It is apparent that the distribution
of red dots (i.e. translated audio samples) shrinks and forms
a cluster surrounded by other “real” clusters and we find
that most of those generated audio samples play interpo-
lated sounds between the nearby instrument families (clus-
ters) and hard to find samples that play other instrument
families at a distance from them (e.g. the right most green
cluster (‘mallet’) and left top light-blue cluster (‘flute’)).

By adding an additional adversarial constraint by the
auxiliary discriminative network, we improve the variety
while it still preserves the source metric: 25.52 (FID) and
0.432 (PC). We also observed that the auxiliary discrimina-
tor changes a lot the translations’ distribution in the audio
metric space in a way that they are spread evenly over the
real clusters (See the third plot in Fig. 2 (b)) and the trans-
lations play much wider variety of musical sounds (so FID
score decreased).

3Note that the maximum of IS score is the number of classes which is
61 for the pitch class and 10 for the family class. The minimum score of
FID is zero for the both classification models.

(a) Face metric space (b) Audio metric space
Figure 2. (a) tSNE visualization of the source face embedding met-
ric space with 20k VGGFace2 face samples. Each face sample is
color-coded by its estimated instrument family label (See text for
details). (b) tSNE visualization of the target audio metric space
with the NSynth real audio samples (color-coded blobs) and trans-
lated face samples (red dots). From Top to Bottom: 1) baseline
model 2) w/ metric preservation 3) w/ auxiliary discriminator. The
colors represent the 10 instrument families: bass, brass, flute, gui-
tar, keyboard, mallet, organ, reed, string, and vocal.

We also measured that how well faces are grouped by
their assigned instrument class labels in the source metric
space by the Silhouette value and our model with the auxil-
iary discriminator outperforms others by 0.0256. Note that
overall SV scores are low since the pre-trained face embed-
ding was not designed to have such well separated clusters,
but the SV rewards the result where faces with the same
class sit close together in the space. Fig. 2 (a) shows the
same randomly sampled 20k face features in the source met-
ric space color-coded by the assigned labels. Our transla-
tion model with the auxiliary discriminator (the third plot in
Fig. 2 (a)) clearly shows the clusters by the assigned labels.

We also randomly sampled face images belonging to
the instrument family label to visually check if those faces
show a pattern on their visual appearance (e.g. same skin
tone, hair color etc.). See Fig. 3: each row shows face im-
ages belonging to the same instrument family (i.e. from
the dots with the same color in Fig. 2 (a)). Our translation
model (Fig. 3 (c)) shows faces belonging to the same instru-
ment family are visually similar to each other and show one
or more common attributes (e.g. female/blond hair in the
eighth row).

4. Conclusions
We have proposed a distance preserving generative ad-

versarial network that automatically learns an information
preserving embedding between two unrelated domains of
media (i.e. image and audio domain). We discovered that
there is a trade-off between the variety of translations and
the preservation of geometric information. To address this



(a) Baseline

(b) + metric preservation

(c) + auxiliary discriminator
Figure 3. Randomly sampled face images grouped by their instru-
ment class, i.e. a visual check to show that faces assigned to the
same instrument class share visual attributes (e.g. same skin tone,
hair color, etc.). Our translation model (c) shows faces belonging
to the same instrument family are visually similar to each other
and show one or more common attributes (e.g. female/blond hair
in the seventh row). If the number of faces per class is fewer than
30, that row is padded by black pixels.

problem, we proposed to use the auxiliary discriminator that
can support the primary discriminator, which helps to bal-
ance the performance between the diversity and the met-
ric preservation. We demonstrate that the proposed model
translates a face image from the VGGFace2 dataset into a
musical sound that plays one of 10 instrument family in the
NSynth dataset and the faces playing the same instrument
type show a pattern on their visual appearance (e.g skin
tone, hair color etc.).
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