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1. Introduction

Dubbing is a post-production process of re-recording ac-
tors’ dialogues in a controlled environment (i.e., a sound
studio), which is extensively used in filmmaking and video
production. In real life, there are many professional voice
actors who specialize in dubbing films, TV series, cartoons
and other video products. In films’ post-production stage,
for example, voice actors may need to dub for the film clips
due to the language barrier or accent of the original actor
or some technical problems (e.g., hard to get clean sound
when filming). Note that the pre-recorded high-definition
video clips are not modified during the dubbing process.
Voice actors are remarkably capable of dubbing according
to lines with proper prosody such as stress, intonation and
rhythm, which allows their speech to be synchronized with
the pre-recorded video.

While dubbing is an impressive ability of professional
actors, we aim to achieve this ability computationally. We
name this novel task silent video dubbing (SVD): synthe-
sizing human speech that is temporally synchronized with
the given silent video according to the corresponding text.
The main challenges of the task are two-fold: (1) temporal
synchronization between synthesized speech and video, i.e.,
the synthesized speech should be synchronized with the lip
movement of the speaker in the given video; (2) the content
of the speech should be consistent with the input text.

Text-to-speech (TTS) synthesis is a task closely re-
lated to dubbing, which aims at converting given texts
into natural speech. Most previous neural TTS mod-
els generate mel-spectrograms autoregressively [9] or non-
autoregressively [7, 6] from input text, and then synthe-
size speech from the generated mel-spectrograms using
vocoder [10]. However, several limitations prevent TTS
from being applied in the dubbing problem: 1) TTS is an
one-to-many mapping problem (i.e., multiple speech vari-
ations can be spoken from the same text) [6], so it is hard
to control the variations (e.g., prosody, pitch and duration)
in synthesized speech; 2) with only text as input, TTS can
not make use of the visual information from the given video
to control speech synthesis, which greatly limits its appli-
cations in dubbing scenarios where synthesized speech are
required to be synchronized with the given video.

We introduce Neural Dubber, the first model to solve the
SVD task. Neural Dubber is a multi-modal speech synthesis
model, which generates high-quality and lip-synced speech
from the given text and silent video. In order to control the
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Figure 1: The schematic diagram of the silent video dub-
bing (SVD) task. Given the video script and the silent video
as input, the SVD task aims to synthesize speech that is tem-
porally synchronized with the video. This is a scene where
two people are talking with each other.

duration and prosody of synthesized speech, Neural Dubber
works in a non-autoregressive way following [7, 6]. The
problem of length mismatch between phoneme sequence
and mel-spectrogram sequence in non-autoregressive TTS
is usually solved by up-sampling the phoneme sequence ac-
cording to the predicted phoneme duration. Instead, we use
the text-video aligner which adopts an attention module be-
tween the video frames and phonemes, and then upsample
the text-video context sequence according to the length ra-
tio between mel-spectrogram sequence and video frame se-
quence. The text-video aligner not only solves the length
mismatch problem, but also allows the lip movement in the
video to control the prosody of the generated speech.

In the real dubbing scenario, voice actors need to alter
the timbre and tone according to different performers in the
video. In order to better simulate the real case in the SVD
task, we propose the image-based speaker embedding (ISE)
module, which aims to synthesize speech with different tim-
bres conditioning on the speakers’ face in the multi-speaker
setting. To the best of our knowledge, this is the first at-
tempt to predict a speaker embedding from a face image
with the goal of generating speech with a reasonable tim-
bre that is consistent with the speaker’s facial features (e.g.,
gender and age). This is achieved by taking advantage of the
natural co-occurrence of faces and speech in videos without
the supervision of speaker identity. With ISE, Neural Dub-
ber can synthesize speech with a reasonable timbre accord-
ing to the speaker’s face. In other words, Neural Dubber
can use different face images to control the timbre of the
synthesized speech.

We conduct experiments on the chemistry lecture dataset



from Lip2Wav [4] for the single-speaker SVD, and the
LRS2 [1] dataset for the multi-speaker SVD. The results
of extensive quantitative and qualitative evaluations show
that in terms of speech quality, Neural Dubber is on par
with state-of-the-art TTS models [9, 6]. Furthermore, Neu-
ral Dubber can synthesize speech temporally synchronized
with the lip movement in video. In the multi-speaker set-
ting, we demonstrate that the ISE enables Neural Dubber to
generate speech with reasonable timbre based on the face
of the speaker, resulting in Neural Dubber outperforming
FastSpeech 2 in a big margin in term of audio quality on the
LRS2 dataset.

2. Method
In this section, we first introduce the novel silent video

dubbing (SVD) task; we then describe the overall architec-
ture of our proposed Neural Dubber; finally we detail the
main components in Neural Dubber.

2.1. Silent Video Dubbing

Given a sentence T and a corresponding silent video clip
V , the goal of silent video dubbing (SVD) is to synthesize
natural and intelligible speech S whose content is consis-
tent with T , and whose prosody is synchronized with the lip
movement of the active speaker in the video V . Compared
to the traditional speech synthesis task which only gener-
ates natural and intelligible speech S given the sentence T ,
SVD task is more difficult due to the synchronization re-
quirement.
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Figure 2: The architecture of Neural Dubber.

2.2. Neural Dubber

2.2.1 Design Overview

Our Neural Dubber aims to solve the SVD task. Concretely,
we formulate the problem as follows: given an phoneme
sequence Sp = {P1, P2, . . . , PTp} and a video frame se-
quence Sv = {I1, I2, . . . , ITv}, we need to predict a target
mel-spectrogram sequence Sm = {Y1, Y2, . . . , YTm}.

The overall model architecture of Neural Dubber is
shown in Figure 2. First, we apply a phoneme encoder fp
and a video encoder fv to process the phonemes and im-
ages respectively. Note that the images we feed to the video
encoder only contain mouth region of the speaker follow-
ing [2]. We use Sm

v to represent these images. After the en-
coding, raw phonemes turn into Hpho = fp(Sp) ∈ RTp×d

while images turn into Hvid = fv(S
m
v ) ∈ RTv×d. Then

we feed Hpho and Hvid into the text-video aligner (see Sec-
tion 2.2.3) and get the expanded sequence Hmel ∈ RTm×d

with the same length as the target mel-spectrogram se-
quence Sm. Meanwhile, a face image randomly selected
from the video frames is input into image-based speaker
embedding (ISE) module (see Section 2.2.4) to generate a
image-based speaker embedding. We add Hmel and ISE
together and feed them into the variance adaptor to add
some variance information (e.g., pitch and energy). Fi-
nally, we use the mel-spectrogram decoder to convert the
adapted hidden sequence into mel-spectrogram sequence
following [7, 6].

2.2.2 Phoneme and Video Encoders

The phoneme encoder and video encoder are shown in Fig-
ure 2a, which are enclosed in a dashed box. The function
of the phoneme encoder and video encoder is to transform
the original phoneme and image sequences into hidden rep-
resentation sequences which contain high-level semantics.
The phoneme encoder we use is similar to that in Fast-
Speech [7], which consists of an embedding layer and N
Feed-Forward Transformer (FFT) blocks. The video en-
coder consists of a feature extractor and K FFT blocks. The
feature extractor is a CNN backbone that generates feature
representation for every input mouth image. And then we
use the FFT blocks to capture the dynamics of the mouth re-
gion because FFT is based on self-attention [8] and 1D con-
volution where self-attention and 1D convolution are suit
for capturing long-term and short-term dynamics respec-
tively.

2.2.3 Text-Video Aligner

The most challenging aspect of the SVD task is align-
ment: (1) the content of the generated speech should come
from the input phonemes; (2) the prosody of the generated
speech should be aligned with the input video in time axis.
So it does not make sense to produce speech solely from
phonemes, nor video. In our design, the text-video aligner
(Figure 2b) aims to find the correspondence between text
and lip movement in the video first, so that synchronized
speech audio can be generated in the later stage.

In the text-video aligner, an attention-based module
learns the alignment between the phoneme sequence and the
video frame sequence, and produces the text-video context



sequence. Then an upsampling operation is performed to
change the length of the text-video context sequence Hcon

from Tv to Tm. In practice, we adopt the popular Scaled
Dot-Product Attention [8] as the attention module, where
Hvid is used as the query, and Hpho is used as both the
key and the value. After the attention module, we get the
text-video context sequence, i.e., the expanded sequence of
phoneme hidden representation by linear combination. In
the attention module, the obtained monotonic alignment be-
tween video frames and phonemes contributes to the syn-
chronization between the synthesized speech and the video
on fine-grained (phoneme) level.

In practice, the length of a mel-spectrograms sequence
is n times that of a video frame sequence. We denote the
n as n = Tmel/Tv . We upsample the text-video context
sequence Hcon to Hmel with scale factor is n. After that,
the length of the text-video context sequence is expanded
to that of the mel-spectrograms sequence. Thus, the prob-
lem of length mismatch between the phoneme and mel-
spectrograms sequence is solved. Because of the attention
between video frames and phonemes, the speed and part of
prosody of synthesized speech are controlled by input video
explicitly, which makes the synthesized speech and input
video well synchronized.

2.2.4 Image-based Speaker Embedding Module

Image-based speaker embedding (ISE) module (Figure 2c),
a new multi-modal speaker embedding module that we pro-
pose, generates an embedding that encapsulates the char-
acteristics of the speaker’s voice from an image of his/her
face. We randomly select a face image Ifi from Sf

v ={
If1 , I

f
2 , . . . , I

f
Tv

}
, and obtain a high-level face feature by

feeding the selected face image into a pre-trained and fixed
face recognition network. Then we feed the face feature to
a trainable MLP and gain the ISE. The predicted ISE is di-
rectly broadcasted and added to Hmel so as to control the
timbre of synthesized speech. Our model learns face-voice
correlations which allow it to produce speech that coincides
with various voice attributes of the speakers (e.g., gender
and age) inferred from their face.

3. Experiments and Results

3.1. Datasets

In the single-speaker setting, we evaluate Neural Dubber
on the chemistry lecture dataset from Lip2Wav [4]. After
data segmentation and cleaning, the dataset contains 6,640
samples , with the total video length of approximately 9
hours. In the following subsections, we refer to this dataset
as chem for short. In multi-speaker setting, we evaluate
Neural Dubber on the LRS2 [1] dataset. Note that we only

train on the training set of the LRS2 dataset, which only
contains data of approximately 29 hours.

3.2. Model Configuration

Neural Dubber Our Neural Dubber consists of 4 feed-
forward Transformer (FFT) blocks [7] in the phoneme en-
coder, the mel-spectrogram decoder, and 2 FFT blocks in
the video encoder. The feature extractor in the video en-
coder is the ResNet18 except for the first 2D convolution
layer being replaced by 3D convolutions. The variance
adaptor contains pitch predictor and energy predictor [6].

Baseline We propose a baseline model based on the
Tacotron [9] system with some modifications which make it
fit to the new SVD task. We call this baseline model Video-
based Tacotron. We concatenate the spectrogram frames
with the corresponding Hvid, and use it as the decoder in-
put to make use of the information in video.

3.3. Evaluation

3.3.1 Metrics

Since the SVD task aims to synthesize human speech syn-
chronized with the video from text, the audio quality and
the audio-visual synchronization (av sync) are the impor-
tant evaluation criteria. We conduct the mean opinion score
(MOS) evaluation on the test set to measure the audio qual-
ity and the av sync. For each video clip, the raters are asked
to rate scores of 1-5 from bad to excellent (higher score in-
dicates better quality) on the audio quality and the av sync,
respectively. In order to measure the av sync quantitatively,
we use the pre-trained SyncNet [3] following [4]. We adopt
two metrics: Lip Sync Error - Distance (LSE-D) and Lip
Sync Error - Confidence (LSE-C) from Wav2Lip [5].

3.3.2 Single-speaker SVD

We first conduct MOS evaluation on the chem single-
speaker dataset, to compare the audio quality and the av
sync of the video clips generated by Neural Dubber (ND)
with other systems, including 1) GT, the ground-truth video
clips; 2) GT-MEL, where we first convert the ground-truth
audio into mel-spectrograms, and then convert it back to
audio using Parallel WaveGAN; 3) FastSpeech 2 (FS2); 4)
Video-based Tacotron (VT). Note that the systems in 2),
3), 4) and Neural Dubber use the same pre-trained Paral-
lel WaveGAN for a fair comparison. In addition, we com-
pare Neural Dubber with those systems on the test set us-
ing the LSE-D and LSE-C metrics. The results for single-
speaker SVD are shown in Table 1. It can be seen that Neu-
ral Dubber can surpass the Video-based Tacotron baseline
and is on par with FastSpeech 2 in terms of audio qual-
ity, which demonstrates that Neural Dubber can synthesize



Method Audio Quality AV Sync LSE-D ↓ LSE-C ↑

GT 3.93 ± 0.08 4.13 ± 0.07 6.926 7.711
GT-MEL 3.83 ± 0.09 4.05 ± 0.07 7.384 6.806

FS2 3.71 ± 0.08 3.29 ± 0.09 11.86 2.805

VT 3.55 ± 0.09 3.03 ± 0.10 11.79 2.231
ND 3.74 ± 0.08 3.91 ± 0.07 7.212 7.037

Table 1: The evaluation results for the single-speaker SVD.

high-quality speech. Furthermore, in terms of the av sync,
Neural Dubber outperforms FastSpeech 2 and Video-based
Tacotron in a big margin and matches GT (Mel + PWG) sys-
tem in both qualitative and quantitative evaluations, which
shows that Neural Dubber can control the prosody of speech
and generate speech synchronized with the video. We also
show a qualitative comparison in Figure 3a which contains
mel-spectrograms of audios generated by the above sys-
tems. It shows that the prosody of the audio generated by
Neural Dubber is closed to that of ground truth recording,
i.e., well synchronized with the video.
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Figure 3: Some visualizations.

3.3.3 Multi-speaker SVD

Similar to Section 3.3.2, we conduct human evaluation and
quantitative evaluation on the LRS2 dataset. Due to the fail-
ure of Video-based Tacotron in single-speaker SVD, we no
longer compare our model with it. The results are shown in
Table 2. We can see that Neural Dubber outperforms Fast-
Speech 2 in a significant margin in terms of audio quality,
exhibiting the effectiveness of ISE in multi-speaker SVD.
The qualitative and quantitative evaluations show that the
speech synthesized by Neural Dubber is much better than
that of FastSpeech 2 and is on par with the ground truth
recordings in terms of av sync. These results show that Neu-
ral Dubber can address the more challenging multi-speaker
SVD task.

Some audio clips are generated by Neural Dubber with
the same phoneme sequence and mouth image sequence but
different speaker face images as input. We select 12 males
and 12 females from the test set of the LRS2 dataset. For

Method Audio Quality AV Sync LSE-D ↓ LSE-C ↑

GT 3.97 ± 0.09 3.81 ± 0.10 7.214 6.755
GT-MEL 3.92 ± 0.09 3.69 ± 0.11 7.317 6.603

FS2 3.15 ± 0.14 3.33 ± 0.10 10.17 3.714

ND 3.58 ± 0.13 3.62 ± 0.09 7.201 6.861

Table 2: The evaluation results for the multi-speaker SVD.

each person, we chose 10 face images with different head
posture, illumination and facial makeup, etc. We visualize
the voice embedding of these audios in Figure 3b, which are
generated by a pre-trained speaker encoder. It can be seen
that the utterances generated from the images of the same
speaker form a tight cluster, and that the cluster representing
each speaker is separated from each other. In addition, there
is a distinctive discrepancy between the speech synthesized
from the face images of different genders. It concludes that
Neural Dubber can use the face image to alter the timbre of
the generated speech.
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