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1. Introduction

The task of obtaining feature representations shared
among data of different modalities has been studied for
many multimedia application scenarios, such as cross-
modal retrieval and grounding. In particular, because a
strong connection between vision and hearing such as the
cocktail party effect has been demonstrated in the cogni-
tive psychology field, various studies have been conducted
on the relationship between images and sound, including
sound localization and sound separation. In audio-visual
representation learning, self-supervised learning is often
adopted because it is difficult to annotate videos by con-
sidering both visual and auditory information. For learning
audio-visual relationships without annotations, pretext tasks
based on semantic or temporal correspondences have been
proposed [1, 6]. However, in these methods, the monaural
sound is enough to capture these correspondences, making
the analysis of spatial information such as sound location
unaddressed.

From videos containing stereo sound, there is potential
for extracting cross-modal features that capture the sound
category and the location of the sound source. Learn-
ing such cross-modal features have practical applications
including image-to-sound or sound-to-image retrieval that
preserves both semantic and spatial information. This is
because stereo sound contains both semantic and horizon-
tal spatial information, i.e., what kind of object the sound
source is and where the sound comes from. However, while
some prior works have used videos with stereo sound for
self-supervised cross-modal feature learning [2, 9], they
have focused only on spatial information, which makes the
representation of semantic information in the learned fea-
tures insufficient.

This paper proposes a method for learning a feature
space in which the distance between an image feature and
a stereo audio feature represents both semantic and spatial
similarity. In learning this feature space, we consider three
types of stereo sound for an image taken from unlabelled
videos: (a) sound corresponding to the image semantically
and spatially, (b) sound not corresponding to the image spa-
tially but having the same semantics, and (c) sound not cor-
responding to the image semantically. Here, we represent
the spatial mismatch by flipping left and right channels of
stereo sounds. Specifically, (a) is extracted from the original
video, which has the same sound categories and locations,
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Figure 1. Assuming a dataset of unannotated videos, there could
be three types of stereo sounds paired with an image.By learning
the distance between these features as shown in this figure, we can
obtain the semantic and spatial relationships between them.

(b) left-right flipped sound from the original video, which
has the same categories but flipped locations, and (c) from
different video, which has different sound categories. Our
key observation is that the semantic and spatial similarity of
the stereo sound for the image should be aligned in the order
(a), (b), (c). Especially (b) is closer to the image than (c) be-
cause we assume that audio-visual semantic mismatch has
a greater impact than the spatial mismatch. We illustrate an
example in Fig. 1. For the image of the trumpet player on
the left, we have (a) trumpet sound from left (Matched), (b)
trumpet sound from the right (Flipped), and (c) drums sound
(Mismatched). Then, (a) is placed in the closest distance to
the image because it corresponds to the image semantically
and spatially. Also, (b) is placed closer to the image than
(c) because (b) has at least the same sound category, trum-
pet, while (c) represents drum sound which does not even
semantically correspond to the image. By introducing the
order constraint on the distances among image and sound
features, the feature encoder can be trained to preserve both
semantic and spatial information about the sound sources.

In this work, we propose a self-supervised method to
learn cross-modal audio-visual features based on a novel
loss, stereo sound ranking (SSR) loss. To enforce the or-
dered relationship between features, we employ a triplet
loss function on image and sound inputs. Experimental
results demonstrate that our method enables novel cross-
modal retrieval with both semantic and spatial correspon-
dences of the sound sources.

2. Proposed Method

Our method aims at learning a cross-modal feature rep-
resentation that captures both semantic and spatial relation-
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Figure 2. Proposed network. Features obtained from Image and
Sound CNNs are input to the proposed loss function, SSR loss.

ships among images and stereo sounds. To this end, we
propose to learn the feature space so that the order of three
stereo sound features to the image feature is (a) Matched,
(b) Flipped, and (c) Mismatched, as shown in Fig. 1.

Figure 2 shows an overview of the network. This con-
sists of the Image and Sound CNNs which are designed
by following a previous work [9]. The image and stereo
sound features are 128-dimensional vectors obtained from
Image and Sound CNNs with L2 normalization. f! in-
dicates the image feature, and f2, ffs, f2  indicate three
types of stereo sound features.

2.1. Stereo Sound Ranking (SSR) loss

We propose Stereo Sound Ranking (SSR) loss based on
triplet loss [7] to learn the feature space that preserves se-
mantic and spatial relationships among images and stereo
sounds. Figure 3 shows the design of SSR loss.

Given the image feature f! and the stereo sound fea-
tures fal, £, f., SSR loss first computes the Euclidean
distances dy,, df, dmm of three feature pairs between f I and
each of £, ffs, £ . SSR loss Lssg is then given as

Lssr = Lings + Lgmm + Lic (D
where
Lyngt = max(0,dn + omer — d), )
Ligmm = maX(0> dr + Ot&mm — dmm)y 3)
L, = max(0,df — ). 4)

(2)-(4) represent the following constraints, respectively. (2)
gives the constraint that d,, < d;. The parameter aygr iS a
margin for room of separation between fs and f;°. Simi-
larly, (3) represents df < dim, and the parameter cgmm is a
margin for room of separation between f° and f5... With
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Figure 3. Design of Stereo Sound Ranking loss. We give an con-
straint to loss: dn < df < dmm.

(2) and (3), we have the three distances in the desired order
(dn < df < dym). However, it is not guaranteed that the
stereo sound features of the same semantics reside within a
certain range from the image feature. To solve this seman-
tic constraint, we define (4). By this equation, dy is limited
within a certain range o.

2.2. Implementation Details

To construct the training input, we first randomly take
two videos with stereo sounds from the dataset. We extract
an image and a stereo sound from one video. We also make
the flipped sound by flipping the left and right channels of
the sound. Also, we extract sound from the other video.
These three stereo sounds are combined with the image into
one input.

To extract an image from a video, we randomly sample
one-second video segments from each 10-second video of
the training dataset. The middle frame of the one-second
video segment is used as an input RGB image after being
resized to 480 X 240 resolution. As data augmentation, we
randomly crop 448 X 224 images. The color and intensity
are randomly changed in the range of 0.7 to 1.3.

We calculate the log-scaled mel-spectrogram of the one-
second sound at 16kHz. Short-time Fourier transform
(STFT) is applied by a 25 ms Hann window with 10 ms
hop, and FFT size of 512. We stack the mel-spectrograms
of left and right audio channels, and the input size becomes
2 X 100 X 128.

3. Experiments

In this section, we report experimental results on cross-
modal retrieval to show that the proposed approach can ac-
quire better feature representations containing both seman-
tic and spatial audio-visual information.

3.1. Datasets

We train the proposed network on two stereo-recorded
video datasets. Both datasets are randomly divided into
training, validation, and test subsets with a ratio of
80%/10%/10%.

FAIR-Play [3] The dataset consists of 1,871 10-second
videos of people playing musical instruments.There are 9
main musical instruments.



YouTube-ASMR [9] The dataset consists of 30,000 10-
second ASMR videos. It is mainly composed of sounds
emitted from the human face (voice, chewing sound) and
sounds made by touching or hitting objects.

Because there is no ground-truth annotation of sound
category and location on these datasets, we manually anno-
tate the test subsets with category labels and their bounding
boxes. We further select items from test subsets that have
clear sound sources. Especially in YouTube-ASMR, we se-
lect only videos whose sound sources are male or female
voices. We obtain 352 annotated image/sound pairs, includ-
ing the ones that are horizontally flipped in both image and
sound in FAIR-Play and 548 pairs in YouTube-ASMR.

3.2. Baseline Methods

Throughout the experiments, Proposed, the proposed
method, is compared with the following baseline methods.
Mismatch Classification [1] This method performs binary
classification identifying whether the visual and sound in-
puts are from the same video using the Euclidean distance
between the image and sound features. The learned fea-
tures capture audio-visual semantic relationships. Image
and Sound CNNss are the same as Proposed.

Flip Classification As a replacement of the pretext classi-
fication task in Mismatch Classification, this method per-
forms the binary classification whether the left and right
channels of stereo sound are flipped or not [9] to learn
audio-visual spatial relationships.

Flip/Mismatch This method uses both tasks of Mismatch
Classification and Flip Classification in a multi-task learn-
ing manner. The Euclidean distance between image and
sound features is calculated and fed into two separate
branches for each task.

Mismatch Distance This corresponds to Proposed with-
out Ly, i.e., without considering the relationship with the
flipped sound.

Flip Distance Similarly, this corresponds to the proposed
method without L¢gmm, i.e., without considering the rela-
tionship with the mismatched sound.

CCA This method uses weights obtained from existing
large datasets. Image features are 4096-dimensional vec-
tors extracted from the last hidden layer of VGG-16 trained
on ImageNet [8]. Sound features are 128-dimensional vec-
tors extracted from VGGish, which is CNN trained on Au-
dioSet [4]. They are aligned to 128-dimensions by Canoni-
cal Correlation Analysis (CCA) and applied to retrieval.

3.3. Evaluation Metrics of Cross-Modal Retrieval

We use nDCG@K [5] as the evaluation metric of cross-
modal retrieval. It evaluates top K retrieved items, with a
value between 0 and 1, where higher values indicate better
results. K is set to 5.

In calculating nDCG, we define the score that evaluates
both sound category and location of retrieved items as fol-
lows. Note that in comparison with CCA the score based
only on the category of the sound sources is used because
the sound input in CCA is monaural sound and has only se-
mantic information.

First, we define the similarity of sound categories in each
dataset. In FAIR-Play, a tree representing the hierarchical
meaning of instruments is constructed using the ontology
in AudioSet [4]. The similarity is calculated using the dis-
tance between categories of the query and the retrieved item
in this tree [1]. In YouTube-ASMR with a binary (male or
female) category, the similarity is set to 1 for the same cat-
egories and O for the different categories. Then, we use the
following two definitions for the score of retrieved items.
Category score is used for comparison with CCA.
Category score To reflect only the category information,
the similarity of sound categories is used as is.
Category+location score This score additionally takes into
account the location of the sound source. We define the lo-
cation of the sound source of the query [,. This indicates
whether the x-coordinate value of the center of the corre-
sponding bounding box is on the left, center, or right when
the image is divided into three parts. Let ¢, be the cate-
gory of the sound source of the query. Similarly, we define
l;, c; for the retrieved items. Then, we compute the score
as 4,1, - sim(cy, ¢;), where 9§ is Kronecker * s delta and
sim(cq, ¢;) is the similarity of sound categories.

3.4. Evaluation of Retrieval Performance

We perform both image-to-sound and sound-to-image
cross-modal retrieval tasks to evaluate the performance
based on both sound source categories and locations using
Category+location score.

Table 1 shows the performances of Proposed and base-
line methods except CCA. In FAIR-Play, we see that the
score of Proposed is higher than that of Mismatch Classi-
fication, implying that our pretext task can learn the audio-
visual spatial relationship better than the prior pretext task.
We also see that Proposed achieved a higher score than Flip
Classification, which indicates that Proposed captures the
semantic information more effectively than simply perform-
ing left-right flip classification. =~ Furthermore, the higher
score than that of Flip/Mismatch indicates that simply com-
bining these two classification tasks is not enough for the
feature representation learning. The score of Flip/Mismatch
is lower than that of Mismatch. This is partly because treat-
ing the Flip and Mismatch branches equally has a negative
impact on learning the distance between features. In ad-
dition, Proposed outperforms Mismatch Distance and Flip
Distance, which indicates that both L& and Legmm play
important roles in SSR loss.

Retrieval on YouTube-ASMR is, on the other hand, fun-



Table 1. Results of cross-modal retrieval in nDCG @35 using Cate-
gory+location score.

FAIR-Play YouTube-ASMR

i-s s-i i-s s-1
Proposed 0.645 0.627 0.598 0.610
Flip Distance 0.210 0.258 0.343 0.339
Mismatch Distance 0471 0438 0.617 0.649
Flip Classification 0.215 0.232  0.340 0.372
Mismatch Classification  0.493  0.481 0.621 0.640
Flip/Mismatch 0.226  0.267 - -

i-s: image-to-sound / s-i: sound-to-image

Table 2. Comparison between Proposed and CCA in cross-modal
retrieval in nDCG @5 using Category score.

FAIR-Play YouTube-ASMR

i-s s-1 i-s s-1
Proposed 0.922 0.921 0.958 0.922
CCA 0.495 0430 0.579 0.616

i-s: image-to-sound / s-i: sound-to-image
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Figure 4. Examples of cross-modal retrieval by the proposed
method. (a) represents the results of FAIR-Play, and (b) represents
the results of YouTube-ASMR.

damentally more challenging because of the noisiness of
YouTube-ASMR as the face-voice dataset. In the training
data, there are some videos in which a face appears with-
out making sound, and another object acts as the sound
source. This kind of videos prevents the network from link-
ing “where the face is” and “where the sound comes from,”
and the network does not capture the audio-visual spatial re-
lationship enough. This causes the degradation of the score
of Proposed in Table 1.

We also compare Proposed with CCA. We perform the
cross-modal retrieval on these methods and evaluate the per-
formance based only on sound categories using Category
score. Table 2 shows the performances of Proposed and
CCA. In both datasets, we see that the score of Proposed
is higher than that of CCA. It indicates that our method is
more suitable for cross-modal retrieval than simply combin-
ing features from existing powerful feature extractors.

Figure 4 shows some retrieved results by Proposed as
qualitative evaluation. This illustrates that Proposed suc-

cessfully performs cross-modal retrieval based on sound
categories and locations. Especially, in some cases of
YouTube-ASMR, Proposed successfully performs retrieval
based on categories and locations, as shown in Fig. 4 (b).

4. Conclusion

In this paper, we have proposed a novel self-supervised
approach to learn semantic and spatial audio-visual rela-
tionships of stereo-recorded videos. The key idea is to de-
fine the relationship among the image and three types of
stereo sounds, matched, flipped, and mismatched. To re-
flect the relationship in feature encoders, we have proposed
a novel loss, SSR loss. We have applied our method to
cross-modal retrieval in stereo-recorded video datasets and
showed the effectiveness in some datasets. Future work in-
cludes extending our method to other tasks such as sound
localization. Reflecting more complex spatial information
of stereo sound such as room reverberation is another task.
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