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Abstract
Acoustic images have the peculiarity to distinguish the spectral

signature of sounds coming from different directions in space and
they provide richer information than the one derived from mono
and binaural microphones. However, they are generated by mi-
crophone arrays, which are not as widespread as ordinary micro-
phones mounted on optical cameras. We propose to leverage the
generation of synthetic acoustic images from common audio-video
data for the task of audio-visual localization1.

1. Introduction

Humans interpret the world through vision and hearing
mostly. More specifically, vision is supported by binaural
hearing. In fact, sound signals are received with a certain
delay between the left and right ear, as well as a slight dif-
ference in intensity, which are critical to perceive spatial
clues about the sources of sound. Besides, humans are able
to fuse the spatial clues elaborated from their auditory sys-
tem with those coming from their sight.

To mimic human capabilities, binaural microphone con-
figurations have been lately investigated in audiovisual
learning [12, 1]. However, binaural configurations are lim-
ited to the estimation of the direction of arrival only along
the azimuth direction. In this work, we exploit instead the
data gathered by a planar array of microphones, which pro-
duce more accurate spatial audio information than stereo
audio. In fact, the acoustic signals acquired by an array can
be combined via a filter-and-sum beamforming algorithm
to produce an acoustic image allowing to localize sound
sources on a 2-dimensional space, as we can see in Figure 1,
rather than along just one single direction [12]. Each pixel
of such images contains the spectral signature of the sound
coming from the corresponding direction in space. Acous-
tic images have already been studied by [5], for supervised
learning and for distilling their content to audio models,
while [8] used them for audio-visual self-supervised learn-
ing. Both works showed they are useful to learn good repre-
sentations. However, they are typically generated by cum-
bersome microphone arrays. Therefore, we propose to syn-
thesize them from the associated video and its correspond-
ing monaural audio signal, drawing inspiration from meth-
ods used for sound spatialization, which separate binaural
audio from mono audio [12, 1]. In this way we can recon-
struct them even without an array of microphones.

1This workshop paper is a short version of [7], accepted at AAAI 2021.

Figure 1: We achieve unsupervised sound source localization through
the generation of a spatialized audio, called acoustic image: starting from
an RGB frame and the corresponding monaural audio (left), we synthe-
size the spectral signature of the sounds associated with each considered
direction, namely each acoustic pixel in the acoustic image (center). Lo-
calization is then obtained by extracting the energy of sound (right).

To solve this problem, we propose a novel architecture,
which is a hybrid of a Variational Autoencoder (VAE) and
a U-Net models. We assess the quality of the generated
synthetic acoustic images by common reconstruction met-
rics and more importantly, on the task of audio-visual local-
ization, by extracting the energy of the spatialized sound.
We show that energy is useful to accurately locate the re-
gion originating the sound thanks to the precise supervi-
sion of the spatial sound distribution provided by the acous-
tic images. Our model is evaluated by considering both
multimodal datasets containing acoustic images and un-
seen datasets containing just monaural audio signals and
RGB frames, showing to transfer well on new domains and
reach more accurate localization than previous state-of-the-
art models on unseen data. Works for sound localization
[4, 3, 9], in fact, usually exploit two-stream deep network
architectures to leverage the correlation between a visual
object and the corresponding sound, which might be not so
reliable as not focusing solely on the region from where the
sound was originated, but often from the entire object. In
summary, the contributions of our paper are:

1. A novel audio-visual localization, through the genera-
tion of acoustic images and by estimating the energy of the
synthesized spatialized sound.

2. A new multimodal learning architecture, trained in a
self-supervised way, to generate synthetic acoustic images,
by jointly processing monaural audio signals and associated
RGB images.

3. A set of experiments to evaluate the quality of the re-
construction of in terms of classification and localization.
Moreover, ground truth acoustic images allow for a fair
evaluation of the sound source localization task, as they are
bias-free from human annotations. We also verify that our
method generalizes better to datasets never seen in training.



2. Method: Audiovisual U-VAE

The proposed architecture resembles a VAE with skip
connections as in the U-Net model, to exploit the upsides
of both: VAEs are very effective generation tools but they
show limitation when the size of the output is too large;
on the contrary, U-Nets are reconstruction tools which can
effectively deal with the details. We name this model U-
VAE. VAE can improve reconstruction with respect to using
a simple autoencoder since its latent loss acts as a regular-
izer and by sampling the latent variable VAE can generate
data with more variability. We did some ablation studies
that show that autoencoders generalize less effectively to
different datasets [7]. VAEs are trained to maximize the
Evidence Lower Bound (ELBO), which maximizes the log
probability of likelihood of generating data similar to real
ones p(x):

ELBO = Eq(z|x)[log p(x|z)]− βKL(q(z|x)||p(z)), (1)

where β = 1. The opposite of the first addendum of ELBO
in Eq. 1 is often interpreted as a reconstruction loss. The
Kullback-Leibler term KL is the latent loss. As proposed
by [2], β can be an adjustable hyperparameter that balances
the two terms as one regards latent independence constraint
and the other one reconstruction accuracy. They propose to
consider β > 1 for good disentangled representations. In-
stead, we are more interested in obtaining good reconstruc-
tion, therefore we weight latent loss using β < 1, choosing
β so that the reconstruction loss and latent loss have the
same order of magnitude.

We generate acoustic images starting from monaural au-
dio samples and the corresponding video frame, to provide
spatial cues which are missing in omnidirectional micro-
phones.

Ground truth acoustic images are computed from the
raw audio signals of the microphones of a planar array
combining them with the filter-and-sum beamforming al-
gorithm. They are volumes, with channels corresponding to
frequency bins, which were compressed to Mel-Frequency
Cepstral Coefficients (MFCC) representation [5], according
to audio human perception characteristics, reducing consis-
tently the computational complexity. Thus, acoustic im-
ages contain the frequency information for each acoustic
pixel represented with MFCC. To simplify the generation
task, we feed the MFCC of a single microphone tiled along
spatial dimensions, rather than raw waveforms or spectro-
grams, in order to have homogeneous input-output.

Visual features are extracted using ResNet50, pretrained
on ImageNet, modified with the removal of global average
pooling and the addition of a 2D convolution layer to match
spatial dimensions of the audio encoder. We train the last
ResNet50 layer only, to focus on the specific regions pro-
ducing sound in the considered training datasets. The visual

Figure 2: We propose an architecture based on VAE and U-Net (U-VAE)
to generate acoustic images. The inputs are monaural audio samples and
the corresponding video frame. We compress audio samples to MFCC.
ResNet50 visual features are concatenated to audio encoder features.

feature map is then concatenated with the last feature map
produced by the audio encoder before sampling as shown in
Figure 2.

The network is trained to reconstruct acoustic images for
the time interval 1/12 s as the ground truth acoustic images
and RGB images frame rates are 12 frames/s. Therefore, we
provide in input MFCC corresponding to 1/12 s of sound
and relative RGB frame. This allows to have almost a real-
time estimate of the directional sound, whereas previous
works considered from 1 s [11] up to 20 s [9] of audio to
visually localize the sound. Furthermore, considering one
frame only for a long audio track can lead to miss important
cues about synchronization.

3. Experiments
In this section we first describe the employed datasets.

Subsequently, we assess the reconstruction capability of our
U-VAE. Finally, we evaluate audio-visual localization both
quantitatively and qualitatively.

3.1. Datasets

We consider the following datasets:

• ACIVW [8] is a multimodal dataset including acoustic im-
ages containing 5 hours of videos acquired in the wild
representing 10 classes.

• AVIA [5] is a multimodal dataset including acoustic im-
ages with 14 different actions with a characteristic sound
performed in 3 scenarios with different noise conditions.

• A random subset of Flickr-SoundNet employed by [9],
which includes sounds sources positions annotated by
three subjects, which facilitates quantitative evaluation.
We consider just the test data, which includes 250 pairs
of frames and their corresponding sound.

• VGGSound is a dataset with over 200k 10s video clips
containing an object making sound for 300 audio classes
from YouTube videos.

We use the first two datasets for both training and testing.
The remaining two are instead used in testing to evaluate the
generalization capability of our U-VAE on unseen domains.



3.2. Evaluation of Reconstruction

In Table 1 we evaluate the reconstruction of acoustic im-
ages for both the test sets of ACIVW and AVIA datasets.
This is done by using the following metrics:

• Mean square error (MSE) measures the reconstruction
error for each acoustic pixel.

• GAN-test [10] measures the accuracy of a classifier
trained on real acoustic images but evaluated on gener-
ated images (we evaluate also on real ones) to quantify
semantic similarity to real samples. To classify acoustic
images, we consider the DualCamNet network introduced
by [5].
We see that when training on ACIVW dataset we have
only a 1% drop if testing on generated acoustic images.
AVIA dataset has a bigger drop, 16%, as its acoustic im-
ages were collected in noisy scenarios and contain peri-
odic sounds. We also test on synthetic acoustic images
created by replicating single-microphone MFCC along
the 2 spatial dimensions. We see that the drop in accu-
racy is huge: 30% for ACIVW and 63% for AVIA, show-
ing that our architecture is essential to generate different
MFCC for each acoustic pixel, namely to modulate sound
in space.

• GAN-train [10] measures the accuracy of a classifier

Test ACIVW AVIA
MSE - 1.1426±0.0053 0.9483±0.0026

GAN-test
real 0.8497±0.0014 0.8383±0.0022
gen. 0.8342±0.0093 0.6700±0.0009

MFCC 0.5410±0.0175 0.2091±0.0027
GAN-train gen. 0.8512±0.0089 0.7871±0.0039
(on gen.) real 0.7661±0.0065 0.6456±0.0100

GAN-train MFCC 0.7323±0.0072 0.6614±0.0038
(on MFCC) real 0.4270±0.0186 0.1307±0.0119

Table 1: Reconstruction metrics for AVIA and ACIVW models. MSE
values are multiplied by 10−2. We specify considered test modalities:
real acoustic images, generated acoustic images, tiled MFCC from a single
microphone.

Train Test AUC IoU
ACIVW ACIVW 59.7±0.2 76.8±0.2
AVIA AVIA 51.2±0.3 54.4±0.7

Train Test AUC cIoU
Senocak 1 [9] 44.9 43.6
Senocak 2 [9] 51.2 52.4
Senocak 3 [9] 55.8 66.0

ACIVW Flickr- 50.3±0.5 53.1±1.9
AVIA SoundNet 37.2±1.8 20.1±3.0

Hu, Nie, and Li 1 [3] (subset) 45.2 41.6
Hu et al. [4] 49.2 50.0

Qian et al. [6] 49.6 52.2
Hu, Nie, and Li 2 [3] 56.8 67.1

Table 2: Audio-visual localization of ACIVW and AVIA models com-
pared with other benchmarks. [9] 1: Unsupervised 10k, [9] 2: Unsuper-
vised 144k ReLU, [9] 3: Unsupervised 144k, [3] 1: Unsupervised 20k
AudioSet, [3] 2: Unsupervised 400k Flickr-SoundNet.

trained on generated data and evaluated on real test im-
ages (we evaluate also on generated ones). GAN-train
metric captures the diversity of generated samples.
The best result is obtained on ACIVW dataset, where we
have only a 9% drop when testing on real samples. When
testing on AVIA, instead, the drop is 14%. Nevertheless,
we notice that on generated data we have good results for
both datasets when testing on generated data.
Last, we train the classifier on uniform acoustic images
artificially created by replicating MFCC from a single mi-
crophone and testing on real acoustic images. This ex-
periment is designed to show how our U-VAE is actually
modulating MFCC for each spatial direction. Further-
more, when both training and testing on replicated sin-
gle microphone MFCC we get worse performance than
when training and testing from acoustic images (GAN-
test on real), proving that spatialized audio allows increas-
ing classification accuracy.

3.3. Audio-Visual Localization

We evaluate now localization results both quantitatively
and qualitatively firstly on ACIVW, AVIA using intersec-
tion over union (IoU) and area under the curve (AUC),
then on Flickr-SoundNet using consensus IoU and AUC,
whereas we have no ground truth for VGGSound dataset
for which can only show some qualitative results.

Results for ACIVW and AVIA
1. Quantitative Results
Given synthetic and true energy, we evaluate our results

quantitatively using IoU and AUC. The results are at the
top of Table 2. We see that training and testing on ACIVW
dataset we have a better result than when training and test-
ing on AVIA because we have more data and less noise.

2. Qualitative Results
As regards ACIVW dataset, the energy of our recon-

struction in Figure 3b is very similar to the energy of real
test samples in Figure 3a. As it can be noticed from the
first row of Figure 3b, the reconstructed image is sometimes
even less noisy than the ground truth one.

The AVIA dataset is a more challenging benchmark not
only because of noise present in some scenarios but also due
to the periodicity of considered sounds: in some frames we
do not have any sound but only background noise, such as
in the second row of Figure 3c, so that it is difficult to match
sound and video. On the contrary, ACIVW dataset contains
continuous sound and energy is always mapping with visual
objects. As we can see in the first row of Figure 3d, in the
anechoic chamber the sound localization is very precise be-
cause the sound is present and there is little noise (compare
to real energy in Figure 3c). In the last row of Figure 3d
we see that also in AVIA we can sometimes improve sound
localization when there is noise in the original image.



(a) (b) (c) (d) (e) (f) (g) (h)
Figure 3: Qualitative results for audio-visual localization. ACIVW: (a) True energy. (b) Synthetic energy. AVIA: (c) True energy. (d) Synthetic energy.
Flickr-SoundNet synthetic energy using: (e) ACIVW model. (f) AVIA model. VGGSound synthetic energy using : (g) ACIVW model. (h) AVIA model.

Results for Flickr-SoundNet
1. Quantitative Results
We tested ACIVW and AVIA models on Flickr-

SoundNet test set of [9] even if the considered classes
are different. This dataset includes ground truth bound-
ing boxes to have an objective evaluation of localization.
To compare with [9], we evaluated the energy estimate us-
ing their metric, which is consensus IoU (cIoU), based on a
consensus map between different annotators. We compare
our self-supervised model with other unsupervised models
in Table 2 (bottom). We cannot beat the model of [3] trained
on 400k videos of Flickr-SoundNet, which is far more data
than what we used in training and above all the same dataset
used for the testing. However, our ACIVW model can ob-
tain results that perform better than the recent [6], than 2
of the models proposed by [9], also than [4, 3], which were
trained on more videos, seconds of audio and classes than
ACIVW dataset. So our model is more efficient as it gener-
alizes better to new datasets, even if training using a dataset
different from the testing including only 10 classes. AVIA
model accuracy is lower because of its noisy training data.

2. Qualitative Results
We see some results of estimated energy in Figure 3e and

Figure 3f. We can see that ACIVW model can understand
that sound of the train is coming from wheels rolling on the
rail rather than the train itself. AVIA model performs better
on actions accomplished by people.

Qualitative Results for VGGSound Dataset
To evaluate ACIVW and AVIA models on real videos we

test them on a subset of VGGSound choosing classes sim-
ilar to those considered at training time, depending on the
training dataset. We report some qualitative samples as no
ground truths are provided. We see examples from ACIVW
model in Figure 3g and AVIA model in Figure 3h. The es-
timated energy maps are very realistic even if belonging to
a completely different dataset never seen during training.

Best results are obtained using the ACIVW model.

4. Conclusions
In this work, we propose a method to reconstruct acous-

tic images from standard videos, without the need for an
array of microphones. To verify its effectiveness, we eval-
uated both reconstruction quality and audio-visual localiza-
tion, performed by estimating the energy of sound, showing
a better generalization capability than recent methods based
on the correlation between audio and video data.
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