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Abstract

We introduce a novel self-supervised pretext task for
learning representations from audio-visual content. Prior
work on audio-visual representation learning leverages
correspondences at the video level. Approaches based on
audio-visual correspondence (AVC) predict whether audio
and video clips originate from the same or different video
instances. Audio-visual temporal synchronization (AVTS)
further discriminates negative pairs originated from the
same video instance but at different moments in time. While
these approaches learn high-quality representations for
downstream tasks such as action recognition, their training
objectives disregard spatial cues naturally occurring in au-
dio and visual signals. To learn from these spatial cues, we
tasked a network to perform contrastive audio-visual spa-
tial alignment of 360° video and spatial audio. The ability
to perform spatial alignment is enhanced by reasoning over
the full spatial content of the 360° video using a transformer
architecture to combine representations from multiple view-
points. The advantages of the proposed pretext task are
demonstrated on a variety of audio and visual downstream
tasks, including audio-visual correspondence, spatial align-
ment, action recognition and video semantic segmentation.

1. Introduction

In computer vision, the natural co-occurrence of audio
and video has been extensively studied. Prior work has
shown that this co-occurrence can be leveraged to learn rep-
resentations in a self-supervised manner, i.e., without hu-
man annotations. A common approach is to learn to match
audio and video clips of the same video instance [1, 12].
Prior work has also demonstrated the value of temporal
synchronization between audio and video clips for learning
representations for downstream tasks such as action recog-
nition [7, 14]. Since these methods do not need to localize
sound sources, they struggle to discriminate visual concepts
that often co-occur. For example, the sound of a car can be
quite distinctive, and thus it is a good target description for
the “car” visual concept. However, current approaches use
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Figure 1: Audio-visual spatial alignment. Prior work on audio-
visual representation learning leverages correspondences at the
video level. Audio-visual correspondence (AVC) [1, 12] predicts
whether a pair of audio and video clips originate from the same
video (positive) or different videos (negative). Audio-visual tem-
poral synchronization (AVTS) [14, 7] discriminates negative pairs
that are sampled from the same video but different moments in
time. However, prior work ignores the spatial cues of audio-visual
signals. Instead, we learn representations by performing audio-
visual spatial alignment (AVSA) of 360◦video and spatial audio.
This is accomplished by training a model to distinguish audio and
video clips extracted from different viewpoints.

this audio as a descriptor for the whole video clip, as op-
posed to the region containing the car. Since cars and roads
often co-occur, there is an inherent ambiguity about which
of the two produce the sound. This makes it is hard to learn
good representations for visual concepts like “cars”, distin-
guishable from co-occurring objects like “roads” by pure
audio-visual correspondence or temporal synchronization.

To address this issue, we learn representations by train-
ing deep neural networks with 1) 360◦video data that con-
tain audio-visual signals with strong spatial cues and 2)
a pretext task to conduct audio-visual spatial alignment
(AVSA, Figure 1). Unlike regular videos with mono audio
recordings, 360◦video data and spatial audio formats like
ambisonics fully capture the spatial layout of audio and vi-
sual content within a scene. To learn from this spatial infor-
mation, we collected a large 360◦video dataset, five times
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Figure 2: Architecture overview for contrastive audio-visual spatial alignment.
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Figure 3: Transformer architecture for context-
aware video-to-audio and audio-to-video feature
translation.

larger than currently available datasets. We also designed a
pretext task where audio and video clips are sampled from
different viewpoints within a 360◦video, and spatially mis-
aligned audio/video clips are treated as negatives examples
for contrastive learning. To enhance the learned represen-
tations, two modifications to the standard contrastive learn-
ing setup are proposed. First, the ability to perform spa-
tial alignment is boosted using a curriculum learning strat-
egy that initially focus on learning audio-visual correspon-
dences at the video level. Second, we propose to reason
over the full spatial content of the 360◦video by combin-
ing representations from multiple viewpoints using a trans-
former network. We show the benefits of the AVSA pretext
task on a variety of audio and visual downstream tasks, in-
cluding audio-visual correspondence and spatial alignment,
action recognition and video semantic segmentation.

2. Audio-visual spatial alignment

We learn audio-visual representations by leveraging spa-
tial cues in 360◦media. 360◦video and spatial audio en-
code visual and audio signals arriving from all directions
(θ, φ) around the recording location, where θ denotes the
longitude (or horizontal) angle, φ the latitude (or eleva-
tion) angle. We adopt the equi-rectangular projection as
the 360◦video format and first-order ambisonics [4] for the
spatial audio. Both formats can be easily rotated and/or de-
coded into viewpoint specific clips.

2.1. Contrastive AVSA

Inspired by recent advances in contrastive learning [13,
12] , we propose to solve the audio-visual spatial align-
ment task in a contrastive fashion. As shown in Figure 1,

given a 360◦audio-video sample (vi, ai),K video and audio
clips {(vki , aki )}Kk=1 are extracted from K randomly sam-
pled viewing directions {(θk, φk)}Kk=1. Video clips vki are
obtained by extracting normal field-of-view (NFOV) crops
using a Gnomonic projection centered around (θk, φk), and
audio clips aki by realigning the global frame of reference of
the ambisonics signal such that the frontal direction points
towards (θk, φk) [8]. Audio-visual spatial alignment is then
encouraged by tasking a network to predict the correct cor-
respondence between the K video {vki }Kk=1 and the K au-
dio {aki }Kk=1 signals.

2.2. Architecture

Figure 2 summarizes the architecture used to solve the
spatial alignment task. First, video and audio encoders, fv
and fa, extract feature representations from each clip inde-
pendently, vk

i = fv(vki ) and aki = fa(aki ). These repre-
sentations are then converted between the two modalities
using audio-to-video ga2v and video-to-audio gv2a feature
translation networks

v̄1
i , . . . , v̄

K
i = ga2v(a1i , . . . ,a

K
i ), (1)

ā1i , . . . , ā
K
i = gv2a(v1

i , . . . ,v
K
i ). (2)

One important distinction between audio and video is the
spatial localization of the signals. Unlike video, any sound
source can be heard regardless of the listening angle. In
other words, while an audio clip aki sampled at position
(θk, φk) contains audio from all sound sources present in
a scene, only those physically located around (θk, φk) can
be seen on the video clip vki . This implies that, to enable
accurate feature translation, networks gv2a and ga2v should
combine features from all sampled locations. This is ac-
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Figure 4: Examples from YT-360 dataset.

Building

Ceiling
Floor

Mountain

Road

Person

Sky

Snow

Tree

Wall
Window
Motorcycle

Figure 5: Segmentation results from an AVSA pre-trained model on the YT-360 test set.

complished by a translation network similar to the trans-
former of [17]. As shown in Fig. 3, given a set of K fea-
tures {xk}Kk=1, a transformer of depth D alternates D times
between two modules. The first module combines the K
features xk using attention

{αk,l}Kl=1 = Softmax

({
〈WT

keyxk,W
T
qrxl〉√

d

}K

l=1

)
, (3)

yk = Norm
(
xk +WT

0

∑
l αk,lW

T
valxl

)
. (4)

The second module computes a simple clip-wise feed-
forward transformation

zk = Norm
(
yk +WT

2 max(WT
1 yk, 0)

)
. (5)

In (3)-(5), Wkey,Wqr,Wval,W0,W1 and W2 are learnable
weights and Norm is layer normalization [2]. We omit the
biases of linear transformations for simplicity of notation.

2.3. Learning strategy

AVSA is a difficult task to optimize since it requires dis-
criminating between various crops from the same video. To
enhance learning, we employed a curriculum learning strat-
egy [3]. In the first phase, the network is trained to identify
audio-visual correspondences (AVC) [1, 12] at the video
level. This is accomplished by extracting a single crop
(vi, ai) for each video i from a randomly drawn viewing
angle. The visual and audio encoders, fv and fa, are then
trained to minimize

LAVC =
∑
i

LInfoNCE
(
vi,ai, {aj}Nj=1

)
+ LInfoNCE

(
ai,vi, {vj}Nj=1

) (6)

where vi = fv(vi) and ai = fa(ai) are the video and audio
representations. LInfoNCE is the InfoNCE loss [13]

LInfoNCE(x,xt,Px) = − log
exp(h(xt,x)/τ)∑

xp∈Px
exp(h(xp,x)/τ)

(7)
where h(x,xt) is a prediction head that computes the co-
sine similarity between x and xt after linear projection into
a low-dimensional space, and τ is a temperature hyper-
parameter. In the case of AVC, the target representation

xt is the feature from the crop of same video but opposing
modality, and the proposal distribution Px is composed by
the target feature representations of all videos in the batch.

In the second phase, the network is trained on the more
challenging task of matching audio and video at the crop
level, i.e. matching representations in the presence of mul-
tiple crops per video. This is accomplished by augmenting
the proposal set Px to include representations from multi-
ple randomly sampled viewing angles {(vki , aki )}Kk=1 from
the same video. In this phase, we also introduce the feature
translation networks gv2a and ga2v and require the trans-
lated features (v̄k

i and āki ) to match the encoder outputs (vk
i

and aki ) obtained for the corresponding viewing angle k.
Encoders fv and fa and feature translation networks gv2a
and ga2v are jointly trained to minimize

LAVSA =
∑
i

∑
k

LInfoNCE
(
v̄k
i ,v

k
i ,
{
vl
j

}N,K

j,l=1

)
+LInfoNCE

(
āki ,a

k
i ,
{
alj
}N,K

j,l=1

)
.

(8)

2.4. YouTube-360 dataset

We collected a dataset of 360◦video with spatial audio
from YouTube, containing clips from a diverse set of top-
ics such as musical performances, vlogs, sports, and oth-
ers. Search results were cleaned by removing videos that 1)
did not contain valid ambisonics, 2) only contain still im-
ages, or 3) contain a significant amount of post-production
sounds such as voice-overs and background music. The re-
sulting dataset, denoted YouTube-360 (YT-360), contains
a total of 5 506 videos, which was split into 4 506 videos
for training and 1 000 for testing. The videos are processed
into 88 733 clips of roughly 10s each (246 hours of video
content), with periods of silence skipped. We also gener-
ated segmetation maps for YT-360 using the state-of-the-
art ResNet101 Panoptic FPN model [6] trained on the MS-
COCO dataset [11]. Examples from the YT-360 dataset are
shown in Figure 4 together with the predicted segmentation
maps and heatmaps of spatial audio volume.

3. Experiments

We evaluate the representations learned by AVSA pre-
training on several downstream tasks.



Evaluation Task AVC-Bin AVSA-Bin
# Viewpoints 1 4 1 4

AVC no transf. 79.82 82.68 59.48 59.25
transf. – 83.87 – 61.20

AVTS no transf. 80.08 82.77 59.78 60.37
transf. – 83.77 – 60.73

AVSA no transf. 86.19 91.67 64.97 68.87
transf. – 89.83 – 69.97

Table 1: Accuracy of binary AVC and AVSA pre-
dictions on YT-360 test set.

Video only +Audio +Audio+Context
Pix Acc mIoU Pix Acc mIoU Pix Acc mIoU

AVC 71.16 32.85 71.07 32.69 – –
AVTS 73.24 34.88 72.97 34.88 – –
AVSA 73.44 35.11 73.11 34.63 73.85 35.83

AVSA (no curr.) 71.95 33.66 71.49 33.23 72.06 34.30
AVSA (mlp) 73.10 35.02 73.21 34.83 72.68 34.35

Kinetics (sup) 75.47 36.91 – – – –
End-to-end 77.37 41.05 77.93 42.00 79.65 43.21

Table 2: Pixel accuracy and mean IoU of semantic segmentation
predictions on YT-360 test set.

UCF HMDB
Clip@1 Video@1 Clip@1 Video@1

Scratch 54.85 59.95 27.40 31.10
Kinetics Sup. 78.50 83.43 46.45 51.90

AVC 64.63 69.68 31.33 34.58
AVTS 65.65 70.34 32.29 35.89
AVSA 68.52 73.80 32.96 37.66

Table 3: Action recognition performance on UCF and HMDB.

3.1. Experimental setting

Video pre-processing We sampled K = 4 crops per
video at different viewing angles. Normal field-of-view
(NFOV) crops are extracted using a Gnomonic projection
with random angular coverage between 25◦and 90◦wide
for data augmentation. Following NFOV projection, video
clips are resized into 112 × 112 resolution. Random hori-
zontal flipping, color jittering and Z normalization are ap-
plied. Each video clip is 0.5s long and is extracted at 16fps.

Audio pre-processing First-order ambisonics (FOA) are
used for spatial audio. Audio clips for the different viewing
angles are generated by simply rotating the ambisonics [8].
One second of audio is extracted at 24kHz, and four chan-
nels (FOA) of normalized log mel-spectrograms are used as
the input to the audio encoder.

Architecture and optimization The video encoder fv is
a 18-layer R(2+1)D model [16], and the audio encoder fa
is a 9-layer 2D convolutional neural network operating on
the time-frequency domain. The translation networks, gv2a
and ga2v , are instantiated with depth D = 2. Training is
conducted using the Adam optimizer [5] with a batch size
of 28 distributed over 2 GPUs, learning rate of 1e − 4,
weight decay of 1e − 5 and default momentum parameters
(β1, β2) = (0.9, 0.999). Both curriculum learning phases
are trained for 50 epochs. Models trained only on the first
or second phases are trained for 100 epochs.

Baseline pre-training methods We compare AVSA to
Audio-Visual Correspondence (AVC) [1, 12] and Audio-
Visual Temporal Synchronization (AVTS) [7, 14] training
on the YouTube-360 dataset. AVC is trained to optimize
the loss of (6), which only uses negatives from different
videos. Note that (6) is similar to the loss used in [1] but
considers multiple negatives simultaneously. This has ac-
tually been shown to improve generalization in [12]. To
implement AVTS, we augment the proposal set Px of the
InfoNCE loss of (7) with clips sampled from different mo-
ments in time. In the base AVC and AVTS implementations,
we directly match the audio and visual features computed
by the encoders fv and fa directly, as done in the original
papers [1, 12, 7, 14]. However, to control for the number
of seen crops, we also conduct AVC and AVTS pre-training
using multiple crops of the same video and the feature trans-
lation networks ga2v and gv2a. Since AVC requires predic-
tions at the video level (not for each individual clip), clip
representations are combined by max-pooling.

3.2. Results

Audio-visual spatial alignment. We start by evaluating
the performance on binary AVC and AVSA tasks, where
a classification head on top of audio and visual features is
trained to predict if the audio-visual pair are sampled from
the same video instance (AVC) or at the same spatial direc-
tion (AVSA). For the binary AVSA task, negative pairs are
generated by artificially rotating the ambisonic audio of a
positive pair. We also study the performance improvements
on both tasks by averaging outputs over four viewpoints.

Table 1 shows that the proposed AVSA pretext training
mechanism significantly outperforms AVC and AVTS on
both evaluation tasks, increasing the binary AVC accuracy
by 6% and AVSA by 5% using a single input clip. By learn-
ing representations that are discriminative of different view-
points, AVSA learns a more diverse set of features, result-
ing an even more significant gain when all 4 viewpoints are
used (>8% on AVSA-Bin). We also observe improvements
by using the transformer architecture in 5 out of 6 configu-
rations, showing its effectiveness at combining information



from different viewpoints.

Semantic segmentation. AVSA representations are also
evaluated on semantic segmentation. We extract features
from the video encoder fv at multiple scales, which were
combined using a feature pyramid network (FPN) [10] for
semantic segmentation. To measure the value added by au-
dio inputs, we concatenate the features from the audio en-
coder fa at the start of the top-down pathway of the FPN
head. Similarly, to measure the benefits of combining fea-
tures from multiple viewpoints, we concatenate the context-
aware representations computed by the feature translation
modules gv2a and ga2v . Since the goal is to evaluate the
pretext representations, networks trained on the pretext task
were kept frozen. To provide an upper bound on the perfor-
mance, we trained the whole system end-to-end.

Table 2 shows the pixel accuracy and mean IoU scores
obtained using video features alone, or their combination
with audio and context features. Examples of segmentation
maps obtained with the AVSA model with context features
are also shown in Figure 5. AVSA learns significantly better
visual features for semantic segmentation than AVC. This
is likely due to the fine-grained nature of the AVSA task
which requires discrimination of multiple crops within the
same video frame. As a result, AVSA improves the most
upon AVC on background classes such as rocks (34.7%
accuracy vs. 27.7%), pavement (36.8% vs. 33.3%), sand
(42.1% vs. 38.8%), sea (50.1% vs. 46.8%) and road (47.1%
vs. 45.1%). When context features from four viewpoints
are combined, using the translation networks gv2a and ga2v ,
AVSA yields a 3% mIoU improvement over AVC and 1%
over AVTS. Without curriculum learning, AVSA achieved
1.5% worse mIoU. Similar loss is observed when replacing
the transformer architecture of gv2a and ga2v with a simi-
larly sized multi-layer perceptron, confirming the benefit of
modeling spatial context for semantic segmentation.

Action recognition. Following standard practices, we
finetuned the pretext models either on the UCF [15] or the
HMDB [9] datasets, and measure the top-1 accuracies ob-
tained for a single clip or by averaging predictions over 25
clips per video. For comparison, we also provide the per-
formance of our model trained on UCF and HMDB from
a random initialization (Scratch), or finetuned from a fully
supervised model trained on Kinetics [18] (Kinetics Sup.).
The results shown in Table 3 show once more the benefits
of AVSA pretext training. AVSA dense predictions outper-
form AVC by 4% on UCF and 3% on HMDB, and outper-
form AVTS by 3.5% on UCF and 2% on HMDB.
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