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1. Introduction
In this paper, we investigate multisensory integration for

capturing the 3D shape and motion of horses. Multiple sen-
sory channels, like vision, hearing, touch, smell and taste,
are the way humans experience the 3D world [24]. Among
them, vision is the sense that allows us to perceive the mo-
tion and appearance of objects. Model-based computer vi-
sion methods assume a model of the object is available.
For humans, images or videos are interpreted for 3D hu-
man shape and pose estimation [1, 7, 12, 10, 22, 26, 11, 8]
through SMPL, a 3D statistical shape model [17].

Hearing complements vision, providing another dimen-
sion to perception. Many works studied the correlation be-
tween sound and motion, such as estimating upper body
movements from piano or violin music [23], or synthesiz-
ing plausible gestures for a humanoid virtual agent to ac-
company natural speech [13]. VOCA [2] uses audio to cap-
ture an animated 3D human face, mapping the speech to lip
movement for the 3D human face model FLAME [15].

The human brain learns the integration between different
senses, which deepening our understanding of the world.
Much research simulates sensory data integration, combin-
ing video and sound. Owens et al. [19] achieve scene anal-
ysis through audio and video. Gao et al. [3] perform speech
separation by exploiting visual information from the video.
Multisensory integration is the basis of perceptual halluci-
nation, such as hearing the sound of feet stepping on the
ground makes us imagine human or animal motion. How-
ever, very few studies have exploited the complementary
nature of vision and sound for 3D motion estimation, espe-
cially for animals, to mimic human perception.

In this work, we investigate multisensory integration to
recover 3D motion of horses. Specifically, we hypothesize
that audio complements video in the task of 3D shape and
pose estimation from videos, and audio helps to estimate
more accurate poses. To our best knowledge, our study is
the first to estimate the 3D shape and pose of horses by com-
bining video and audio.

Our goal is to recover horse motion. Horses are prob-
ably one of the oldest domesticated animals and the most
relevant animal for human activities like sports and agricul-
ture. This increases the demand for studying horses through

markerless motion capture. Moreover, horse motion recon-
struction has a high potential to benefit from the audio cue
since horses have hard hooves and strong bodies and make
characteristic and significant sounds when moving.

We utilize a 3D articulated shape model of horses, hS-
MAL [14], which parameterizes the shape and pose of the
subject. Two architectures are proposed to explore the ad-
ditional source of information provided by audio for learn-
ing to regress model parameters, exploiting audio at training
time alone, and at both training and test time (see Fig. 1).
We consider: A model fusion setting [5], where, at train-
ing time, the audio and video features are passed through
a shared regression block to predict 3D pose; this architec-
ture does not require audio at test time. An early fusion
setting [5], where the audio and video features are concate-
nated and processed through fully connected layers before
entering the 3D pose regression module. In general appli-
cation, we can expect the audio channel to be absent or very
noisy, with the sound of the animal overlapped with dif-
ferent ambient sounds. It would be beneficial to employ the
model-fusion network that can exploit audio for training but
be applied to a silent video. Our results show that this is
possible, thus the complementary use of audio and video
provides a useful signal for learning to regress 3D pose.

2. Method
2.1. The hSMAL model

The hSMAL model [14] is a specific SMAL model[28]
for horses, with 36 body segments and 1, 497 vertices. The
model is learned with the alignment method of [28] and is
a template-based 3D model, where the mean template is the
average of 37 horse toys scans. The model defines a 3D
mesh as a function M(β, θ). β is the shape variable, de-
scribing vertex-based deformations with respect to the mean
template ; θ is the pose parameter, denoting the relative ro-
tation of each joint to its parent in the predefined kinematic
tree in axis angle representation.

2.2. Multimodal model regression
Regression methods for 3D pose estimation usually ex-

ploit an inverse rendering approach, given the lack of 3D
ground truth. We consider shape, pose and camera estima-



tion, as they all contribute to the rendering of the model.
The visual input In:n+(t−1) from time step n to n+(t−1)

are forwarded to the backbone network for feature extrac-
tion. We adopt the temporal encoder from [8] to learn a
temporal representation of the video frames. The image
features from the backbone are passed through the temporal
encoder and a fully-connected layer to get the final feature.
The corresponding audio An:n+(t−1) are transformed to a
Mel spectrogram generated by Librosa [18], followed by
a backbone network to extract audio features. As in [7],
we use an iterative error feedback (IEF) loop, here called
regression block, for predicting parameters. We use two
regression blocks in our work, named ψ and Φ. Block ψ
uses the visual input to predict the weak perspective camera
Cn:n+(t−1) in t frames and model shape parameters, since
we assume the shape of the subject doesn’t change during a
small period. Block Φ predicts the pose parameters of the
model in t frames. We pass the predicted model parameters
and the weak perspective cameras into Pytorch3d [20] for
rendering silhouettes and 2D keypoints.

(a) Model-fusion.

(b) Early-fusion.

Figure 1: Video-audio fusion frameworks. Video channel
(in blue) and audio channel (in gray).

To deal with multimodality data, we choose the model
implicit fusion on loss (model fusion) and early fusion in
[5, 6]. We assume visual information is the primary modal-
ity, and audio is the auxiliary modality. The network learns
the correlation between the main modality and the auxil-
iary modality during training. During testing, depending on
the network architecture, the auxiliary modality might be
present or not. In these two frameworks, the camera and the
model’s shape are predicted through ψ using visual inputs.
Model-fusion network As shown in Figure 1a, the visual
and audio features are passed through the shared regres-
sion block Φ and output two sets of poses θIn:n+(t−1)

and

θAn:n+(t−1)
, respectively. The two sets of poses are com-

bined with the predicted shape and cameras, passed through
Pytorch3d for rendering two sets of silhouette and 2D key-
points. Since two modalities are processed independently,
we can handle the situation where one of the modalities is
missing in the inference stage.
Early-fusion network As shown in Figure 1b, the visual
and audio features are concatenated and passed to two fully
connected (FC) layers, inspired by the Temporal Binding
Network (TBN) block [9]. The fusion features are then
passed through the regression block Φ for pose estimation.
We need both video and audio as input during testing.
Loss. Both regression networks are trained in an end-to-
end way. We construct the loss function as:

L =
∑

λ∈β,SC ,Kp(·),Sil(·),θ(·),Sθ(·)

ωλLλ, (1)

where (·) denotes the poses from visual input I or audio
A or fusion feature F . Lβ and Lθ(·) are the shape and pose
prior of the hSMAL model defined in [28, 27, 14]. LSC

is
the smooth loss [16, 25] of the predicted camera. LKp(·) ,
LSil(·) and LSθ(·)

are the keypoint loss, silhouette loss and
smooth loss on the root joint and the rest joints, respectively.

3. Experiments
3.1. The Horse Treadmill Dataset

Our data-driven approach requires observations of horses
with videos and audio. The Horse Treadmill Dataset is col-
lected by the University of Zürich [21] 1. The dataset con-
tains videos, audio and 3D motion capture recordings of ten
horse subjects trotting on a treadmill. Three subjects are
discarded due to camera calibration problems, leaving seven
subjects, with one in white and the rest in the dark (brown
or black) colors. Each horse is recorded several times. To
our best knowledge, this dataset is the only one that contains
synchronized videos, audio and motion capture data.
3.2. Implementation

We randomly pick three horses in dark colors for training
and randomly generate nine-frame video clips from the data
as input. We create two test datasets: Test Data 1, contain-
ing data from the other three horses in dark colors and Test
Data 2, containing data from the only white horse. Test Data
2 will pose a much greater challenge to the visual regression
than Test Data 1, which allows us to evaluate the contribu-
tion of the audio cue in both a case with high-quality and
lower-quality visual regression output.

We consider two baselines: a network trained with only
visual input, which named ”Image-only” Network, and the
model fusion network where we only input audio for pose
regression, named ”Audio-only” Network.

1Ethical approval for the collection of this dataset (permission number
51/2013) is granted by The Animal Health and Welfare Commission of the
canton of Zurich after evaluating the study protocol, and the horse owners
gave informed consent for the inclusion of their animals.



3.3. Results
We evaluate the results with the percentage of correct

points (PCK), the intersection of unit (IOU) and the mean
per 3D joint position error after rigid alignment with Pro-
crustes analysis (P-MPJPE) [4].

Audio exploration. We explore the network’s ability to
estimate pose information from audio. To show that the
network learns to interpret audio, we test the Audio-only
network with original audio and white noise. Table 1 shows
that the results with white noise are worse than that with the
original audio. These results are consistent in the visual ex-
ample shown in Figure 2 where the model is in two different
views. The model with white noise has a downward head
and rigid legs from the side view and an unnatural body tilt
from the front view.

Table 1: Quantitative Results with original audio or white
noise as test input.

TestDataset PCK@0.1 ↑ IOU ↑ P-MPJPE ↓

Test Data 1 Original audio 0.910 0.622 0.169
White noise 0.812 0.507 0.211

Test Data 2 Original audio 0.872 0.611 0.147
White noise 0.82 0.551 0.181

Figure 2: Visual Examples of Audio-only network with
original audio or white noise as test input from side and
front view. Left body (in red) and right body (in green).

Comparison between different networks. We report all
the evaluation criteria for the two baseline networks and the
two fusion networks in Table 2.

In Test Data 1, the Early-fusion and Image-only net-
works have similar performance in PCK and IOU. As for

Table 2: Comparison between all networks.

Test Data 1 PCK@0.1 ↑ IOU ↑ P-MPJPE ↓
audio video audio video audio video

Audio-only 0.910 - 0.622 - 0.169 -
Image-only - 0.984 - 0.645 - 0.127
Early-fusion 0.986 0.641 0.125
Model-fusion 0.919 0.960 0.612 0.622 0.164 0.125

Test Data 2 PCK@0.1 ↑ IOU ↑ P-MPJPE ↓
audio video audio video audio Video

Audio-only 0.872 - 0.6107 - 0.147 -
Image-only - 0.961 - 0.644 - 0.159
Early-fusion 0.978 0.643 0.149
Model-fusion 0.950 0.998 0.691 0.691 0.146 0.105

P-MPJPE, the Early-fusion network performs better than
the Audio-only and Image-only network, as it can learn
from both modalities and has the availability of both modal-
ities also at test time. In the Model-fusion network, the
audio and image channel perform better than the Audio-
only and Image-only networks in P-MPJPE, respectively.
As the Model-fusion network effectively benefits from both
modalities at training stage and improves the 3D pose pre-
diction from each modality at test time.

In Test Data 2, the network sees a horse in different col-
ors during testing, which brings a more challenging task.
The Image-only network performs worse in Test Data 2 than
in Test Data 1, while the Audio-only network has mixed
results. Even though the visual information varies, the au-
dio is still consistent and preserves the similar information
of stepping feet on the ground. The Model-fusion network
performs better in all criteria, which shows the benefit.

(a) Test Data 1, where the horses in training and testing dataset
have dark colors.

(b) Test Data 2, where the testing horse is white.

Figure 3: Visual examples in fusion frameworks.



We show visual examples from different networks for a
short sequence when the horse is stepping on the ground. In
Test Data 1 (Figure 3a), we can observe that all networks
perform similarly. In Test Data 2 (Figure 3b), the Image-
only network and Early-fusion network predict rigid legs.
The difference of visual information between training and
test in the case of the white horse compromises the ability
of the Early-fusion network. The Audio-only network and
the Model-fusion network can still predict reasonable poses.

When the network can access two modalities during
training and testing, we find that the Early-fusion network
is more suitable since it can obtain more information from
multiple modalities. However, when the main modality (vi-
sual information) contains noise or is different from the
training dataset, the Model-fusion network could be a better
choice since the auxiliary modality can compensate for the
main modality.

4. Conclusions
In this study, we evaluated the complementary use of au-

dio and video for horse 3D shape and pose regression from
monocular videos. We used the hSMAL model and ex-
plored a unique dataset with video, audio, and motion cap-
ture data. Our experiments show that the complementary
use of audio and video helps to improve 3D pose estimation
from monocular video.
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