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Abstract

The localization of sound sources in audio-visual urban
scenes is a challenging task motivated by real-world ap-
plications such as traffic monitoring and autonomous driv-
ing. In this work, we propose a method, Probability Density
Localization (PDLoc), for estimating the position of vehi-
cles in real-world urban scenes using stereo-audio input
and corresponding visual annotations of approximate vehi-
cle location. We suggest a novel representation of bounding
box annotations of vehicles in urban scenes via a summa-
tion of Gaussian distributions constrained to a true proba-
bility density function, and train a deep learning model in
a regression setting to predict this representation. We show
how this approach can yield successful results in a super-
vised setting for vehicle sound source localization and den-
sity approximation, and analyze performance of our model
against a traditional beamforming approach. We explore
the benefits and limitations of our proposed model and
present an analysis of challenges and potential future work
in sound source localization and density estimation in ur-
ban audio-visual scenes.

1. Motivation and Related Work
The computational understanding of urban scenes is a

growing area of research with major impact in both indus-
try and the public sector, with applications such as traffic
monitoring, the development of assistive devices for the
hearing-impaired, and autonomous driving. Automatically
understanding an urban scene requires estimating not only
which objects are present in the scene, but also where they
are and how they are moving, all in the context of real-
world environments. Urban scenes are extremely complex
both acoustically and visually, often containing visually oc-
cluded sound sources or sounds occurring from the same
approximate position in a scene.

Previous audio-only deep learning approaches and clas-
sical signal processing methods (e.g. beamforming [9], ray-
space transform [3, 4], and acoustic senseor networks [5])
for sound source localization often use synthetic datasets
with multi-channel audio, where the exact position of sound
sources is known. This can be difficult to translate to more
realistic settings. Additionally, audio-visual approaches
such [2], and [12] have shown promise in sound source
localization in video via learning audio-visual correspon-

Figure 1. An example frame with bounding box annotations
mapped to the proposed Gaussian ground truth representation.

dence, but these methods use primarily single channel au-
dio, which removes the spatial information about the loca-
tion of sounding objects.

Our work here builds upon the recent release of the Ur-
bansas dataset and the proposed baseline method [6] for lo-
calization in that work, which uses a coarse binary repre-
sentation of bounding boxes as the ground truth data. When
multiple overlapping vehicles are present in a scene, this
method lacks important information about the density of ve-
hicles at a given position in the scene. To address this issue,
we expand upon [6] in this work and propose a novel rep-
resentation of bounding box annotations of vehicles in ur-
ban scenes via a summation of Gaussian distributions con-
strained to a probability density function.

2. Proposed Method
Task Definition Our goal is to create a supervised model
that uses stereo-audio data from videos of urban scenes to
predict the location of sounding vehicles in a scene over
time. To do so, we propose a model output representation



Figure 2. PDLoc system architecture. The custom output layer is comprised of a summation of Gaussian distributions constrained to a true
probability density function per frame in a video clip, such that the position and density of vehicles is encoded in this representation.

that encodes both the position and density of vehicles in an
urban scene at a given time. This representation offers an
advantage in scenes in which multiple overlapping sound
sources are present in that an approximation of the number
of vehicles at that position is preserved. Additionally, we
avoid mapping vehicle sound to a box or a quantized region,
exploring perhaps a more realistic representation of vehicle
sound production in the form of a normal distribution.

Generating a Gaussian representation of bounding
box annotations Given a video of a urban scene, the posi-
tion of vehicles over time is annotated via bounding boxes.
We extract the center horizontal position of each vehicle
from its bounding box and use this as an approximation for
the Direction of Arrival (DOA) of the sound of the vehi-
cle. We assume the microphones are centered in the Field
of View (FoV) of the camera, and map the center of each
bounding box from its native Cartesian coordinates in the
image frame to an azimuth angle in [−FoV/2,FoV/2], as
shown in Figure 1. We assume a FoV of 120◦ for all videos.

For the nth bounding box in a given frame, we define
an angle vector θ⃗n ∈ RNθ , where θni ∈ [−60, 60] and i ∈
[0, Nθ − 1], and Nθ is the number of angles at which we
will derive a traffic density estimation in each frame. We
set Nθ = 60. We then generate a 1D Gaussian distribution
over θ⃗n for each vehicle n present in a frame, using the
Gaussian PDF below:

g(θ⃗n|µ, σ2) =
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where µ is a scalar and the substraction θ⃗n − µ is done
element-wise. We refer to g(θ⃗n|µ, σ2) as g(θ⃗n) for sim-
plicity. For each g(θ⃗n), we take µ to be the center-point of
the bounding box in the horizontal direction, mapped to an
angle as described above. We use a fixed variance for ev-
ery bounding box at σ2 = 5. We fix the standard deviation
across Gaussians to simplify the learning task and minimize

assumptions about the scene and vehicles within, namely
street angle and loudness related to camera proximity.

Our model uses 5-second chunks of stereo audio as input
data and is trained to predict data matrix P ∈ RNf×Nθ ,
where Nf is the number of time frames in the corresponding
video clip and Nθ as defined above. We derive the value
P[f, i] for f ∈ [0, Nf − 1], i ∈ [0, Nθ − 1] at frame f and
angle index i using a Gaussian method described below and
aim to predict the Nf ×Nθ matrix P as the output of our
model in a regression paradigm.

Many urban scenes contain multiple vehicles in the same
frame (i.e. at the same time), with some vehicles perhaps
overlapping directly in horizontal position. To accommo-
date this, after generating g(θ⃗n) for each bounding box n
in a given frame f , we sum these distributions at the frame
level. We constrain this summation of Gaussians to be a true
probability density function, such that it satisfies the follow-
ing properties: (1) all g(θ⃗n) must be non-negative, and (2)∑Nθ−1

i=0 P [f, i] = 1 for a given frame f . To do this, we
normalize the sum of the Gaussians in each frame f over all
the angles by performing element-wise division of g(θ⃗n) by
the total sum of distributions in that frame:

P[f, ∗] =
∑Vf−1

n=0 g(θ⃗n)

∥
∑Vf−1

n=0 g(θ⃗n) ∥1
, (2)

where Vf is the number of sounding vehicles in a frame
f , and P[f, ∗] represents f -th row of matrix P. The final rep-
resentation of a single clip with Nf frames and Nθ angles is
defined as matrix P ∈ RNf×Nθ . This method is applied to
both the creation of the ground truth data and to the output
of the model as we regress on the values of P directly. Note
that this ground truth representation presents an interesting
challenge in representing frames that contain no bounding
box annotations, as the distributions for these frames must
still sum to 1. For this we generate a uniform distribution
P[f, ∗] = u⃗ where u⃗ ∼ U(−60, 60) for any empty frames.
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Figure 3. Selected frames from street traffic-lyon-1029-43289.mp4 in Urbansas, overlayed with the Gaussian ground truth representation
(white) and PDLoc model predictions (blue), with ground truth peaks (dashed-white), false positive peaks (dashed-red), and true positive
peaks (dashed-green). Note that here the ground truth and predicted distributions are scaled for viewing purposes.

Dataset We use the Urbansas [6] dataset, which is com-
prised of 1080 10-second videos of urban traffic scenes with
corresponding stereo audio. The videos have bounding box
annotations of moving vehicles in the scene at 2 frames per
second, for a total of 20 frames per clip. Urbansas also
features audio annotations that indicate when a vehicle is
clearly audible and even when it is not (i.e. ”unidentifiable
sound” label). These audio annotations in combination with
the bounding boxes allow us to filter to only use scenes with
reasonably audible vehicles and localize them. The dataset
contains data from two distinct sources: TAU [11], in which
the original audio was recorded using binaural equipment,
and MAVD [13], in which the audio was acquired with a
stereo recorder. The resulting Urbansas dataset contains a
variety of scene locations, camera angles, and scene diffi-
culty, from very few to multiple concurrent vehicles. Ad-
ditionally, note that the Urbansas annotations contain class
labels, and for this problem formulation we ignore class la-
bels, operating in a vehicle class-agnostic paradigm.

Network Architecture Our model architecture, shown
in Figure 2, is drawn from the baseline system proposed
in the DCASE 2019 Sound Event Localization and Detec-
tion task [1]. We expand this system to fit our use case,
adding Generalized Cross Correlation with Phase Trans-
form (GCC-PHAT) [7] as an audio feature and introducing
our custom probabilistic output layer (Figure 1).

We use 5-second chunks of stereo audio as input and feed
each segment through an STFT, which is then used to gener-
ate Log Mel Spectrogram and GCC-PHAT features for each
audio segment. The model contains three convolutional lay-
ers followed by two bi-directional gated recurrent unit lay-
ers. We design a custom final layer to constrain the output to
a true probability density function, by (1) enforcing positiv-
ity (2) replacing empty frames with a uniform distribution
across angles (3) normalizing each frame by the sum of that
frame at model output time. We use KL divergence aver-
aged over frames as the loss function in training. We open

source the code for training and evaluation of this model.

3. Results and discussion

PDLoc vs. Beamforming We first evaluate PDLoc against
traditional beamforming approaches for the localization of
sounding vehicles in urban scenes. To provide a baseline
system for sound density estimation, we use a classical
beamforming technique, using the implementation avail-
able in Acoular [10]. This process is based on traditional
signal processing and does not include any iterative learn-
ing. The goal is to obtain a heatmap representing the sound
pressure level at each angle and each point in time such that
we can compare with the output of PDLoc. We separated
the comparison into (1) sound source localization and (2)
traffic activity detection.

Sound Source Localization For the sound source lo-
calization task, we consider only frames that contain ve-
hicles (i.e. ”active” frames), and perform peak picking on
the ground truth representation, and PDLoc and beamform-
ing model outputs, to find local maxima above a threshold
for each framewise distribution, indicating angles at which
peaks are present. We use an angle matching tolerance
âδ = 20◦, and for each ground truth peak angle ai, count
one true-positive (TP ) if exists at least one predicted angle
âj such that |âj − ai| ≤ aδ , otherwise count one false-
negative (FN ). We count one false-positive (FP ) if it does
not exist any i such that |âj − ai| ≤ aδ . At a recall of 0.4,
PDLoc achieved an F1-score of 0.51 vs. the beamforming
method at F1-score = 0.42 across all data in Urbansas. Dig-
ging deeper into the component binaural and stereo portions
of Urbansas, we found the most significant difference be-
tween PDLoc and beamforming in the stereo (MAVD) data
(PDLoc F1-score 0.54 vs. beamforming 0.38). We think
this can be attributed to the stereo recording configuration in
MAVD; the distance between the two microphone capsules
here is only 1.5cm, making the directionality of the beam-
forming approach practically null in the range of frequen-



cies (50Hz to 4000Hz) where vehicles sounds are mostly
present [8]. Traffic Activity Detection We binarized the
output of both PDLoc and the beamforming model to com-
pare these methods on the task of detecting whether a given
frame in a video contains any vehicles. PDLoc outperforms
beamforming across the board, with a precision of 0.76 (at
recall = 0.4) vs. 0.57 for the beamforming method. The
gap in performance between the two likely lies in PDLoc
being trained to discriminate traffic sounds from non-traffic
sounds, while the beamforming baseline does not discrimi-
nate between the type of sound source active in the scene.

Qualitative Example We explore the performance of
PDLoc on a sample video as shown in Figure 3. We observe
that PDLoc is very conservative in general in predicting the
height of the peaks in the distribution. Recall that we con-
strain each distribution to a PDF, so when more vehicles
are present, peak height is naturally lower. For example,
in frames 3 and 5, we are able to localize a single vehicle
very accurately, but struggle to predict the height of a sin-
gle, taller peak. In frames 2, 6, and 7, when two vehicles are
present at the same time and slightly overlapping, we lose
fine-grain localization but capture peak height with more
success. We believe the challenge in accurately predicting
peak height is due to a high presence of frames without vehi-
cles in our training data. We constrain these distributions to
a true PDF, resulting in a uniform distribution, which likely
biases model output especially in moments of uncertainty.

This example illustrates potential benefits of the prob-
abilistic framework of PDLoc over previous methods,
namely information retained in the presence of multiple
overlapping sound sources while maintaining moderate lo-
calization accuracy, and easily interpretable results.

How does performance vary depending on the num-
ber of vehicles in a scene? We also analayze the Mean
Absolute Error (MAE) across frames based on the number
of vehicles present in a scene. The dataset contains signif-
icantly more frames containing a single vehicle than those
containing more than one. We observe that the frame-wise
MAE is lower on average for the few frames that have sig-
nificantly more (i.e. ≥ 5) vehicles. While counterintuitive
initially, this is likely due to the presence and uniform mod-
eling of empty frames in training, as this incentivizes the
model towards flatter predictions, which reflects better in
the MAE calculation for frames containing more vehicles.

4. Conclusions and Future Work
We propose a method for estimating the position of vehi-

cles in real-world urban scenes using stereo-audio input and
corresponding visual annotations using a novel task defini-
tion based on a probabilistic framework. Our method yields
promising results in a supervised setting for vehicle sound
source localization and density approximation, outperform-
ing the beamforming baseline. As future work, to mitigate

the biases of inactive frames in the learning of our model we
plan to divide the task into two stages: detection followed
by localization. Lastly, we plan to explore the task formula-
tion as a fully parametric density estimation (e.g estimating
a Gaussian mixture model per frame).
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