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Abstract

This paper proposes a novel framework for accurate and
stable action prediction in egocentric videos. The diverse
nature of the captured audio and visual features from dif-
ferent domains, such as speech, environmental sounds, and
visual objects, can cause significant inconsistencies in ac-
tion prediction, exacerbated by the use of fixed classification
boundaries in previous methods. To address this issue, we
introduce a learnable classification module that adaptively
adjusts the boundaries for each instance, resulting in more
precise and stable action predictions. We validate the effec-
tiveness of our approach on a new egocentric microwave
operation dataset recorded with Microsoft HoloLens2, which
includes both audio and visual streams. Our experimental
results demonstrate that our approach achieves superior
accuracy and stability compared to existing methods in pre-
dicting actions in real-world egocentric audio-visual videos.

1. Introduction
Wearable computing devices, such as AR glasses, provide

promising avenues for enhancing user-environment interac-
tion. A fundamental challenge in achieving better interaction
is accurately understanding and predicting user behavior. Re-
lying on a single modality is insufficient to handle the com-
plexity and diversity of real-world scenarios. For instance,
identifying a microwave oven is heating through the video
stream alone can be challenging as the sound dominates
the scene. As a result, capturing multimodal information is
crucial to achieve accurate user behavior prediction.

In recent years, there has been a significant focus on
leveraging both audio and visual information for improving
egocentric video tasks. For instance, Owens et al. [11]
leverage audio to aid the visual related tasks.

Egocentric videos are commonly captured in uncon-
strained environments, resulting in large intra-class distance
due to variability in lighting, camera motion, and perspec-
tives. For instance, the same action (such as open microwave)
captured from different angles can have significantly differ-
ent visual features, making it difficult to classify the action.

Figure 1. Overview of our proposed method. (a) We record and
annotate the start time and end time of each action with the AR
glass. (b) Our proposed IAM adapts to each instance point by
making adjustments to the hyper-plane and classification center
based on the features of different instances. This approach creates
a soft boundary between classes.

We formulate the action recognition in egocentric videos
as a multi-classification task, where we optimize an n-fold
classification hyper-plane P ∈ {P1,P2, ...,Pn} based on
the n class centers. Each category center [w1, w2,... wn] is
the center of clustering of corresponding features in a high-
dimensional space, and these centers are optimized during
training to achieve optimal classification performance. How-
ever, the final optimized classification hyper-plane based
on SoftMax in previous methods is determined solely by
the class centers and cannot accurately classify in-the-wild
frames. Specifically, instances near the optimized classifica-
tion hyper-plane tend to be more ambiguous for classifica-
tion, which can result in misclassification and inconsistencies
in recognizing actions. For instance, the proximity of the
action of ‘microwave heating’ to the hyper-plane can cause
it to be misclassified as ‘press the button’. To the best of our
knowledge, this issue has not been previously addressed in
audio-visual works for action recognition.

To address this challenge, we propose an instance adap-
tive module to incorporate instance-specific features into
the hyper-plane, enabling it to fast adapt to the input in-
stance. To evaluate the effectiveness of our proposed method,
we conduct real world experiments with on the Microsoft



HoloLens2 (HL2), one of the most popular AR glass de-
vices. The difference in perspective between the HL2 dataset,
which is more focused on the direction of eye gaze, and pub-
lic egocentric datasets presents a significant challenge in
using models trained on public datasets for real world test-
ing. To overcome this limitation, we manually recorded a
small dataset includes 140 videos and the corresponding
audio with HL2. Our dataset focuses on the task of operat-
ing a microwave oven for heating, and we collected videos
and corresponding synchronous audios of multiple different
users wearing HL2, repeating seven different actions such as
‘open microwave’, ‘close microwave’, ‘place cup’, ‘take out
cup’, ‘press button’, ‘heating’, and ‘alarm’, and manually an-
notated the start and end times of these actions as labels. Our
experiments demonstrate that our proposed method achieves
excellent performance in real-world scenarios, highlighting
the effectiveness of our approach.

Our contributions are summarized as follows: 1) We pro-
pose an instance adaptive module that dynamically adjusts
the position of the hyper-plane according to the input in-
stance, addressing the challenge of classification inconsisten-
cies caused by large intra-class distances between real-world
frames and dataset samples. 2) We introduce a small dataset
recorded using the Hololens2 device, which contains videos
of operating a microwave oven from a different egocentric
perspective than previous datasets. Our dataset also includes
full action annotations, enabling more real-life evaluation
and development of egocentric audio-visual algorithm for
practical applications.

2. Related Work
Action Recognition in Egocentric Videos. Egocentric
videos provide various intrinsic cues that can be used for ac-
tion recognition. For instance, hand gestures and movement
have been utilized for action recognition. Yan et al. [13]
utilized eye gaze to model the attention area. Other works
have emphasized the importance of objects present in the
scene and those related to the tasks for action recognition.
Aboubakr et al. [2] modeled object state transitions to infer
actions. In contrast to previous works, we only utilize video
and corresponding audio to verify our instance adaptive mod-
ule.
Egocentric Video Datasets. In recent years, several ego-
centric video datasets have been introduced to facilitate re-
search on action recognition in first-person vision. EPIC-
Kitchens [4] contains over 11 hours of egocentric video data
captured in a kitchen environment. Activities of Daily Liv-
ing (ADL) [6] consists of egocentric video data captured
during six different activities of daily living, Ego4D [8] is a
large-scale egocentric video dataset with multiple modalities
and ground-truth annotations for action recognition, object
detection, and hand-object interactions. These datasets have
been useful for various person vision tasks, but they do not

specifically target the vision challenges posed by using AR
glasses. To address this gap, we recorded a dataset focusing
on person vision using AR glasses in real-world scenarios.
Egocentric Audio and Visual Learning. The frequent and
abrupt changes in camera view in egocentric video can make
purely visual predictions unstable and inaccurate for action
recognition. To address this limitation, several works have
focused on incorporating additional sensory modalities, such
as audio, to improve the stability and accuracy of the pre-
dictions. Owens et al. [11] has shown that incorporating
audio information can help mitigate the instability of purely
visual predictions. Recently, there has been a growing in-
terest in learning semantic correspondences between visual
and audio features for prediction. Akbari et al. [3] have all
explored this approach. In our work, we follow these popular
approaches and perform feature fusion on aligned audio and
video streams

3. Method and Datasets
In this section, we introduce our proposed instance adap-

tive module (IAM) in detail and provide an overview of our
HoloLens2 dataset.To extract the visual and audio features,
we choose the simplest ResNet50 and CNN14 [9] backbone
modules, respectively, and classify the prediction results
together with the IAM.

3.1. Instance Adaptive Module

The instability of action recognition in egocentric video
arises from the large intra-class distance between features
within the same action class, resulting in ambiguity in in-
stances that lie close to the classification hyperplane. Previ-
ous methods have employed classification centers trained to
cover all training data, which helps to generalize to unseen
data, but often results in poor performance in ambiguous
cases. To address this issue, the hyperplane needs to dy-
namically adjust to each instance. In this work, we propose
the Instance Adaptive Module (IAM), which extends the
adaptive hyperplane idea from face forgery recognition [12],
to higher-dimensional hyperplanes for action recognition in
egocentric video. The IAM adaptively adjusts the classifica-
tion center based on the instance itself, enabling robust and
efficient predictions in the wild.

The pipeline of our network structure is shown in Fig 2,
a two stream network to extract audio and video features
separately, we select the audio length is 1 second and ran-
dom sample 5 frames in the corresponding video as the input.
For the audio stream, we use a 14-layers CNN [9] to extract
the audio feature, which is pretrained on Audioset [7]. To
capture pixel-level semantic features for visual features, we
employ ResNet50 as a feature extractor which is pretrained
on COCO [10] segmentation datasets. The input to IAM
x is the output of the two stream feature extractor, specif-
ically, the features from both streams are fused and then



Figure 2. (a) The pipeline structure of our methods. The AR glass captures the video stream, the built-in microphone captures the audio, two
stream input are encoded via Ev and Ea. Ev is a weight-sharing structure that encodes each frame separately. (b) The upper pair is the
perspective of the AR glass, the lower is the perspective of the 3rd-person camera, the researcher wears the HL2 to record the videos.

subjected to a max-pooling operation to obtain x. The x
is a embedding feature vector of each instance. And we
assume the corresponding action label as y (e.g. ‘open mi-
crowave’, ‘close microwave’, ‘heating’, ‘press button’ etc.).
Then the conditional probability output (classification score)
P (Y = y|x) by a deep neural network can be estimated via
the SoftMax operator after FC layer (the normalized form):
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where τ is a scaling factor and [w1, · · · ,wn] ∈ Rd×n is the
weight tensor of the last fully-connected layer. N denotes
the number of classes (N is 7 in our microwave task). d is the
dimension of embeddings. The classification center for each
category can be represented by [w1, · · · ,wn], where n is
the number of categories. To classify an instance embedding
x, we compute its cosine distance with each wi. Previous
approaches [3] commonly use a fixed positive margin, as
shown in Equ 1, to classify all instances. However, as shown
in Fig 1,some instances, such as the dotted points, may be
located near the classification boundary and cannot be well-
separated by a fixed margin. To address this challenge, we
propose the instance-adapted classification centers (IAM) in
Equ 2, which enables the dynamic adjustment of the margin
to either positive or negative. This approach creates more
flexible decision boundaries that can better adapt to difficult
instances, resulting in improved classification performance.

The architecture of IAM is illustrated in Fig 2, each cat-
egory is initialized to represent an FC layers, which we
denote as wi. Then the corresponding Batch Normalization
and ReLU are utilized to extract bias embeddings bi. Our
IAM SoftMax is formalized as:
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we provide further insights into how the IAM adjusts the

classification centers in Equ 3,
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As shown in Equ 3, The parameter ϵ in our framework can be
seen as an adaptive margin that is specific to each instance,
which is paramerized with multiple fully connected layers.

3.2. Dataset Overview

With focus on online action recognition with AR glass,
we employed HL2 to simultaneously sample audio at 16
KHZ while transmitting video at 30 FPS [5]. As depicted
in Fig 1(b), the dataset recording process involved the re-
searcher wearing the HL2 device and performing actions
based on rendered instructions within the HL2 display. The
resulting dataset has a more natural perspective that better
aligns with human vision than previous egocentric datasets
recorded with cameras. Our dataset comprises 150 video
clips, each of which has been annotated at the millisecond
level using VIA [1]. For each video clip, we segmented
the start and end times for each action and assigned a corre-
sponding action labels. The video clips are randomly divided
into 80% for training and 20% for testing.

3.3. Experiment and Results
In-the-wild Evaluation. Our method’s strength lies in its
robustness and accuracy for testing in real-world scenarios.



Figure 3. The confusion matrix for each label in evaluation. The
higher accuracy with darker color. Comparison of (a) and (b) shows
that IAM reduces confusion and improves accuracy for each action
label.

Actions wo IAM Our
Open Micro 0.62 0.73
Close Micro 0.63 0.70
Place Cup 0.66 0.77
Press Button 0.80 0.92
Heating 0.74 0.83
Alarm 0.75 0.83
Take Out 0.60 0.82

Table 1. Evaluation results of the baseline method (with SoftMax
shown in Equ 1 and the proposed method. Our method improves
the classification accuracy for all actions labels.

We captured the stream from HL2 and push it to recognition
model to enable real-time processing of audio and video
synchronously without delays.
Implementation details. We divide videos in the datasets
to clips of 1 second. Each segmented video clip includes 30
frames. The optimizer is AdamW and the learning rate sets
to 1e-3. We train our model for 20 epochs.
Baseline and Metrics. We choose the normalized softmax
as the baseline method and compare with the proposed IAM
in our work. We compare the performance of different meth-
ods using accuracy as an intuitive metric.

3.4. Comparison Results
Quantitative Comparison Results. Table 1 shows the quan-
titative comparison results. We can find that with IAM, the
accuracy of all action labels has been greatly improved. Fur-
thermore, by analyzing the confusion matrix in Fig 3, we
can find that our accuracy was significantly improved for
some challenging cases, such as ‘heating’. When using IAM,
our model was able to more accurately predict the action of
heating without random misclassifications.
Qualitative Results. We have included our results in a demo
video in a following anonymous link1, which we highly
recommend viewing for a quantitative demonstration of the
results.

1https://files.catbox.moe/az7l3l.mp4
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