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1. Introduction

Autism spectrum disorder (ASD) is a complex, heteroge-
neous neurodevelopmental condition associated with per-
sistent challenges in social communication and interaction,
as well as the presence of restrictive or repetitive behaviors
and interests [1]. Prior research that has utilized behavioral
observation methods by using video datasets to identify
autistic behaviors has focused solely on the visual modal-
ity. This singular focus has limited the scope of analyses
as it tends to capture only restricted and repetitive behav-
iors (RRBs) overlooking social interaction challenges inte-
gral to the diagnosis of autism. Therefore, in an effort to
better leverage AI for screening autism we created a new
audio-visual autism behavior recognition dataset (AV-ASD)
and introduced an audio-visual autism behavior recognition
task, which aims to identify both social interaction behav-
iors in addition to RRBs.

With the newly collected dataset, we establish a com-
prehensive benchmark for exploring how to better recog-
nize autism behaviors in videos. We develop several base-
lines using foundation models like CLIP (image), Image-
Bind (video/audio), and Whisper (speech). We further in-
vestigate the effectiveness of Multimodal Large Language
Models (MLLMs), including GPT-4V [11] and LLaVA [6],
as zero-shot benchmarks. To utilize audio and speech cues
in MLLMs, we adopt audio captioning and speech recogni-
tion models to generate text prompts. To further improve
performance, we employ an audio-visual instruction tun-
ing, adapting LLaVA into LLaVA-ASD with our annotated
data. This significantly enhances its efficacy, particularly
with audio-augmented prompts. However, solely relying on
behavior labels during instruction tuning can compromise
the explainability and lead to catastrophic forgetting. To
address these challenges, we propose a novel post-hoc to
ad-hoc framework that maintains the model’s predictive ac-
curacy while preserving its prediction explanation ability.
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Figure 1. The vision-only model incorrectly identified two behav-
iors that were not present, whereas the audio-visual model cor-
rectly identified the three behaviors. This illustrates how multi-
modal integration enables more accurate behavior recognition.

2. The AV-ASD Dataset

AV-ASD distinguishes itself from preceding datasets in sev-
eral significant ways, as delineated in Tab. 1. First, our
dataset offers a far greater number of categories and video
clips than all previous datasets combined. Second, AV-
ASD is the first dataset to include social behaviors. Third,
our dataset is the first ever autism dataset to use a multi-
label setting, which is more practical since multiple autism-
related behaviors could happen at the same time.

To create our behavioral categories for the social and
RRB domains of autism, we identified social challenges
from the social behavior classifications of the DSM-V-
TR [1] and M-CHAT-R/F [16] screening tool. RRB behav-
iors were adapted from SSBD [14] and ESBD [10]. No-
tably, we were limited to behaviors that could be identified
in a brief video clip. The resulting taxonomy consisted of
nine distinct autistic behavioral categories and one Back-
ground (i.e., not-applicable) category.

We curated the AV-ASD dataset through a keyword
video search and excluded irrelevant content such as lec-
tures and cartoons. This resulted in 928 distinct video clips
extracted from 569 online videos. A team of six students
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Dataset Clips Categories Multi-Label Social Behaviors

SSBD [14] 75 3 ✗ ✗
ESBD [10] 141 4 ✗ ✗
Wei et al. [17] 61 3 ✗ ✗
ASBD [15] 165 4 ✗ ✗

AV-ASD 928 10 ✓ ✓

Table 1. Comparison of the AV-ASD dataset with other autism-
related behavior datasets used in ASD screening research.

meticulously annotated each clip, followed by verification
by a Speech Pathologist (SLP) with 15 years of experience
working with autistic children. This research utilized data
in a manner consistent with previous studies [10, 14], and
our university’s IRB approved our study.

3. Autism Behavior Recognition
We leverage recent foundation models to extract features
for autism behavior recognition, utilizing CLIP [12] for im-
age features, ImageBind [3] for processing images, videos,
and audio, and Whisper [13] for speech analysis. These ex-
tracted features are then inputted into MLPs for prediction.

To use CLIP and ImageBind as image encoders, a video
is transformed into a single composite image. Specifically,
given a sequence of frames, nine frames are uniformly se-
lected and arranged into a 3 × 3 grid to form a composite
image denoted as IV . These extracted features are subse-
quently utilized in MLP models designed to classify vari-
ous autism behaviors. Additionally, this composite image
format serves as instrumental visual input for MLLMs.

3.1. Zero-shot Baselines with MLLMs

MLLMs have revolutionized zero-shot learning, seamlessly
integrating information across modalities like vision and
language. To this end, we investigated the potential of
MLLMs in precisely identifying autism behaviors in videos,
focusing on their zero-shot capabilities. We employed two
MLLMs: GPT-4V, a state-of-the-art proprietary model de-
veloped by OpenAI [11], and LLaVA, an open-source alter-
native excelling in similar tasks [7, 8] as the benchmark.

MLLMs for Autism Behavior Recognition. Given that
current open-source SOTA MLLMs lack the ability to pro-
cess long video sequences, we opted to repurpose the com-
posite image, IV , as the visual input for our MLLMs. To as-
sist the MLLMs in accurately identifying autism-related be-
haviors, we developed a textual prompt P (see Fig. 2). This
prompt is strategically devised to act as a linguistic guide,
steering the MLLMs toward recognizing autistic cues and
patterns inherent in the video content. The prediction of be-
havior is thus derived using ŷ = MLLM(IV , P ), where ŷ
represents the MLLMs’ output.

Bridging the Multimodal Gap. Current MLLMs typically
focus on image and text inputs, posing a challenge for an-
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Given the sequence of images,
with Audio Caption: {audio_caption},
and Speech Transcription: {transcription}
Indicate which, if any, of the following 
categories of autism-related behaviors are 
present: {behaviors}. If none of the above 
behaviors are described, please categorize 
as Background.
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Figure 2. LLaVA-ASD: Instruction Tuning for LLaVA. Given a
video preview IV and an enhanced text prompt P ′, which is a text
prompt P augmented with an audio caption AC and speech tran-
scription ST . These elements are combined to form the model’s
instruction input Inst. The output consists of multiple autism be-
havior labels presented in text format as y. We employed LoRA
for efficient fine-tuning.

alyzing multimodal data including audio and speech cues.
To overcome this limitation in our autism behavior recogni-
tion task, we propose a Multimodal Representational Text
Fusion with two key strategies: (1) Audio Captioning [5]:
It transformed audio segments into textual descriptions, en-
riching the input with semantic information extracted from
the audio content; (2) Speech Recognition [13]: This ap-
proach transcribed spoken segments into text, providing the
model with direct linguistic cues from the audio modality.
By leveraging these strategies, we translate audio into struc-
tured text representations readily usable by MLLMs. Com-
bining this textual data with the prompt P enables compre-
hensive multimodal analysis, empowering MLLMs to cap-
ture multimodal cues in video content, ultimately leading to
a more accurate recognition of autism-related behaviors.

3.2. MLLMs with Instruction Tuning

Beyond zero-shot testing, we leverage the power of instruc-
tion tuning [2, 9, 18] to enhance MLLMs’ performance on
our specialized dataset containing autism-related behaviors.
This aims to refine the models’ understanding of autism-
specific cues from different modalities, leading to height-
ened effectiveness in identifying autism-related behaviors.
Since GPT-4V is not open-source, we adopt LLaVA as
a baseline for instruction tuning. For training, we con-
struct an instruction tuning pair denoted as {Inst, y}. Here,
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Given the sequence of images,
with Audio Caption: a woman is speaking while a baby is crying in 
the background,
and Speech Transcription:  Open. Open. Open. Open. Open. Open.
Indicate which, if any, of the following categories of autism-related 
behaviors are present: Absence or Avoidance of Eye Contact, 
Aggressive Behavior, Hyper- or Hyporeactivity to Sensory Input, 
Non-Responsiveness to Verbal Interaction, Non-Typical Language, 
Object Lining-Up, Self-Hitting or Self-Injurious Behavior, 
Self-Spinning or Spinning Objects, Upper Limb Stereotypies. If 
none of the above behaviors are described, please categorize as 
Background.

Given the sequence of images,
with Audio Caption: a woman is speaking while a baby is crying in 
the background,
and Speech Transcription:  Open. Open. Open. Open. Open. Open.
Following categories of autism-related behaviors are present: 
Absence or Avoidance of Eye Contact, Hyper- or Hyporeactivity 
to Sensory Input, Non-Responsiveness to Verbal Interaction, 
Non-Typical Language.
Please explain why we can infer those behaviors based on the given 
information.

Write explanation with post-hoc reasoning

Learn to explain by ad-hoc reasoning

Based on the sequence of images, we can infer the presence of autism-related 
behaviors due to the woman's actions and the baby's reactions. In the images, 
the woman is speaking while the baby is crying in the background. The 
baby's crying could be interpreted as a sign of distress or discomfort, which is 
a common behavior in children with autism. Additionally, the woman's 
actions of speaking and possibly not engaging in eye contact with the baby 
might indicate a lack of responsiveness to the baby's verbal and non-verbal 
cues. This could be a sign of non-typical language or communication, which 
is another characteristic of autism.

Furthermore, the baby's crying could also be a result of sensory overload or 
sensory hypersensitivity, which is a common challenge faced by children 
with autism. The baby's reaction to the woman's speech might be a 
manifestation of this sensory issue.

In summary, the sequence of images suggests that the woman and the baby 
may be experiencing challenges related to autism, such as non-typical 
language, absence or avoidance of eye contact, and sensory 
hypersensitivity.

Figure 3. Explainability Framework of post-hoc to ad-hoc. The
model initially generates a pseudo-explanation (Post-Hoc) based
on the provided ground truth. Subsequently, it uses this pseudo-
explanation as guidance to learn how to explain the decision-
making process in identifying behaviors without the need for pro-
vided ground truth (Ad-Hoc).

Inst = [IV , P
′] represents the model’s input for a video

clip, where P ′ is an enhanced text prompt. This prompt P ′

is a combination of the initial input prompt P augmented
with audio caption (AC) and speech transcription (ST). The
term y refers to the annotated labels for the behavior cate-
gories in the video clip. In implementation, we employed
the low-rank adaptation (LoRA) [4] for efficient training.
We denote the trained model as LLaVA-ASD.

4. Experiments
4.1. Results and Analysis

MLLMs’ zero-shot testing fails. Initially, we tested the
zero-shot ability of GPT-4V and LLaVA to identify autistic
behavior, but both fell short as in Table 2. GPT-4V simply
refused to answer most of the requests, and LLaVA predom-
inantly predicted Background. The results demonstrate the
two MLLMs cannot directly be used to tackle our task.

Instruction tuning with LLaVA works. We conducted
further fine-tuning of LLaVA under four settings to eval-
uate how different modalities contribute to the recognition
performance (see Table 3). (1) A noteworthy observation is
that although LLaVA’s visual encoder is identical to CLIP’s,
the V-only model’s performance (53.45%) significantly sur-
passes that of the original CLIP equipped with a linear
probe (45.03%). This improvement indicates that the LLM
component in LLaVA effectively boosts the perception en-
coder’s classification efficacy. The fine-tuned model out-
performed all previous baselines listed in Table 2, thereby
illustrating the superior capability of MLLMs in identifying
autism behaviors. (2) The LLaVA-ASD model, incorpo-
rating visual, audio, and speech information, achieves the
best performance in many categories, while combining vi-
sual and speech data together achieved the best overall per-
formance, emphasizing the importance of multimodal data
for accurate recognition of autism behaviors. This suggests
that the use of audio captioning and speech transcription can
leverage auditory and speech information into prompts, thus

improving recognition in videos. Additionally, these results
confirm that the MLLM serves as an efficient integrator of
different modalities.

4.2. Beyond Recognition: Explanibility

For an AI assistant to effectively aid doctors in autism
screening, it is essential for the system to provide explana-
tions for its suggestions. MLLMs demonstrate strong rea-
soning capabilities and can generate detailed explanations
alongside predictions. However, zero-shot models may
yield incorrect autism behavior recognition results. While
instruction tuning using ground truth behavior labels im-
proves performance, this approach risks reducing the model
to a mere classifier, potentially losing its reasoning ability
due to catastrophic forgetting of previous knowledge. To
overcome this issue and achieve explainable predictions, we
initiate an exploration, laying groundwork for further ad-
vancements in future research.

A straightforward solution to ensure accurate explana-
tions is to utilize ground truth annotations from human
experts for fine-tuning. However, this process is labor-
intensive and costly. To circumvent these challenges, we
propose a novel, efficient self-supervised pipeline: post-hoc
to ad-hoc, illustrated in Fig. 3. It contains two steps. First,
with a visual input, audio caption, speech transcription, and
prompt instruction Pinst, accompanied by ground truth be-
havior labels Lgt, we employ LLaVA to infer explanations
for these labels. The output of this step, termed post-hoc
reasoning:

Rpost-hoc = MLLM(IV , AC, ST, Pinst, Lgt) (1)

Second, in the absence of ground truth, we utilize the
post-hoc reasoning as pseudo labels to train our model for
generating ad-hoc reasoning, aiming for outputs similar to
the post-hoc reasoning:

Rad-hoc = MLLM(IV , AC, ST, P̂inst; θ) (2)

θ̂ = argmin
θ

CE(Rad-hoc,Rpost-hoc) (3)

Here, P̂inst denotes the prompt for the ad-hoc step and
CE(·) is cross-entropy loss.

Fine-tuning MLLMs with synthetic post-hoc reasoning
data effectively prevents the model from reducing to a triv-
ial behavior classifier. Additionally, it improves its explain-
ability for the task of recognizing autism behaviors.

5. Conclusion
In this paper, we present the AV-ASD dataset, a unique
and comprehensive collection featuring social behavioral
categories and repetitive behaviors. Our thorough experi-
ments reveal that the integration of visual and speech data
markedly improves autism behavior recognition, thereby
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Method Dummy Baseline CLIP ImageBind (image) ImageBind (video) ImageBind (audio) Whisper GPT-4V LLaVA Ours (LLaVA-ASD)

F1-score (%) 26.83 45.72 39.19 44.06 28.47 36.48 33.88 15.61 59.77

Table 2. Autism behavior recognition results of different baselines on AV-ASD test set. Top-2 results are highlighted.

Behavior V V+A V+S V+A+S

Absence or avoidance of eye contact 46.15 47.89 56.34 55.38
Aggressive behavior 72.13 63.33 66.67 75.00
Hyper- or hyporeactivity to sensory input 40.68 31.17 35.14 29.03
Non-responsiveness to verbal interaction 36.36 33.96 48.28 40.00
Non-typical language 20.69 29.27 45.45 32.43
Object lining-up 75.00 82.35 85.71 88.89
Self-hitting or self-injurious behavior 50.00 40.00 52.63 43.90
Self-spinning or spinning objects 56.60 57.69 60.38 65.38
Upper limb stereotypies 57.45 58.06 66.02 67.33
Background 79.45 81.69 81.08 81.01

Average 53.45 52.54 59.77 57.84

Table 3. Autism behavior recognition results with different modal-
ities by LoRA fine-tuned on LLaVA.

facilitating the creation of more effective diagnostic tools.
Our LLaVA-ASD model, which combines audio captioning
and speech transcription with instruction tuning, excels in
utilizing multimodal information for enhanced autism be-
havior recognition. Additionally, our post-hoc to ad-hoc
framework represents a pioneering attempt to tackle the
challenge of explainability in autism behavior recognition.
Acknowledgments. This work was supported in part by
UTD SPIRe award. The article solely reflects the opinions
and conclusions of its authors but not the funding agent.
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