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1. Introduction

Audio-visual question answering (AVQA) aims to an-
swer questions relevant to visual objects, sounds, and their
relationships within videos [6,10,11]. This task delves into
the complexities of multimodal scenes, which are both di-
verse and dynamic. The key challenges of AVQA lie in
accurately identifying the audio and video segments that di-
rectly relate to the question and establishing whether the
identified visual regions produce sounds relevant to the
question. Prior research primarily leverages attention mech-
anisms to tackle these challenges. For instance, employing
audio-guided visual attention helps localize sounding visual
regions, while question-guided temporal attention aggre-
gates relevant audio and visual segments [4–6]. Nonethe-
less, audio and visual segments don’t always correlate,
and multimodal video segments can vary dynamically over
time. Furthermore, when faced with lengthy sequences of
audio-visual data accompanied by textual inputs, attention
mechanisms may struggle to accurately discern the relation-
ships across different modalities over extended durations.
Consequently, the selection mechnism, driven by attention
weights, may falter with long sequences, inadvertently ag-
gregating irrelevant segments despite minimal weights.

The Mamba model [1] has proven its strength in mod-
eling long sequences across diverse tasks. It dynamically
adjusts the parameters of State Space Models (SSMs) [2]
guided by the input, allowing for context-aware reason-
ing. Mamba’s unique capability to select and retain infor-
mation indefinitely inspired us to expand its success story
into the realm of multimodal video modeling. In this pa-
per, we introduce CM-Mamba, a new extension that lever-
ages a cross-modality selection mechanism within Mamba
models. The model is designed to efficiently leverage in-
formation across audio, visual, and textual modalities, in
which the parameters of SSMs will dynamically adjust in
response to inputs from an alternative modality. To lever-
age the power of CM-Mamba for AVQA, we introduce
AV-Mamba (see Fig. 1), which consists of four compo-
nents: feature extraction, audio-guided spatial grounding,
question-guided cross-modal temporal grounding, and pre-
diction. CM-Mamba significantly enhances the spatial and
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Figure 1: Our AVQA framework.

temporal grounding components, enabling more precise se-
lection of relevant information. To evaluate the efficacy of
the proposed model, we conducted extensive experiments
on the MUSIC-AVQA dataset [6]. The experimental results
demonstrate that our AV-Mamba can effectively answer au-
dio, visual, and audio-visual questions relevant to videos
and outperform several recent state-of-the-art approaches.
Our main contributions include: 1) a new CM-Mamba
model that can leverage cross-modal information for select-
ing useful contexts for multimodal sequence modeling; 2)
a novel AV-Mamba framework for AVQA that leverages
CM-Mamba for effective audio-guided spatial grounding
and question-guided temporal grounding. Extensive exper-
iments on the Music-AVQA dataset can validate the effec-
tiveness of the proposed approach.

2. Method
2.1. Overview

One of the primary challenges in addressing the AVQA
task is the effective fusion of multimodal information. It is
essential to capitalize on both spatial and temporal cues to
enhance the fusion process. To achieve this, our approach
draws inspiration from the architecture of the Audio-Visual
Spatial-Temporal (AVST) model [6]. As illustrated in Fig-
ure 1, our first step involves feature extraction from text,
audio, and visual inputs. This is followed by using an audio-



guided spatial grounding module, which extracts visual in-
formation relevant to the sound sources. Then, a question-
guided cross-modal temporal grounding module processes
these audio and visual features along the time dimension,
integrating them with features derived from the question.
Finally, we use the fused feature to obtain the final answer.

2.2. Cross-Modality Selective State Models

In this section, we first introduce the key concepts of the
State Space Models and Mamba. Then, we present CM-
Mamba, a novel framework designed to seamlessly inte-
grate cross-modality information.

2.2.1 Preliminaries: State Space Models and Mamba

A standard form of State Space Models is as follows.

ḣ(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and N
is the dimension of the hidden states. The input function
or sequence x(t) ∈ R is mapped to the output function or
sequence y(t) ∈ R through the hidden states h(t) ∈ RN .
After applying zero-order hold discretization:

ht = Āht−1 + B̄xt

yt = Cht +Dxt

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B.

S4 [2] is characterized by four parameters (∆,A,B,C)
and possesses a significant property known as linear time in-
variance (LTI), indicating that the model’s dynamics remain
constant over time. While this property enhances computa-
tional efficiency, it also constrains the model’s capacity for
context-aware reasoning.

The Mamba model [1] facilitates the context-aware rea-
soning capability of SSMs by dynamically adjusting its pa-
rameters based on input relevance:

B = sB(x)

C = sC(x)

∆ = τ∆(Parameter + s∆(x)).

Here, sB(x) = LinearN(x), sC(x) = LinearN(x),
s∆(x) = BroadcastD(Linear1(x)) and τ∆ = softplus.

2.2.2 CM-Mamba with Two-Tier Selective Scan

In audio-visual modeling, the relevance of audio and visual
information may vary at different timesteps. Therefore, we
aim to devise a more effective selective mechanism for ag-
gregating pertinent and valuable information. We seek to

enhance our approach by leveraging the long-range and se-
lective modeling capabilities of Mamba. To enable cross-
modal information selection, a natural approach is to utilize
other modalities to determine the Mamba parameters.

From the results of the Mamba [1], we observed that pa-
rameter A exerts the most significant influence on the sys-
tem as it governs the evolution of the entire system. Fol-
lowing this, parameter B demonstrates considerable influ-
ence, with parameter C holding lesser significance, as it can
be incorporated in the post-processing phase. Inspired by
this observation, we enable cross-modal selectivity in our
CM-Mamba by leveraging cross-modal information to de-
termine parameters A and B.

The overall architecture of CM-Mamba is shown in
Fig. 2, given a query q, we employ a two-tier selective
scan module based on Mamba to extract relevant informa-
tion from a sequence s. We apply bidirectional mamba in
each cross-modality selective scan block. In the first tier,
the Mamba parameters B1, B2, C1, C2 and ∆1, ∆2 are
determined solely by the query q. Subsequently, the param-
eters of the second-tier Mamba B3, B4, C3, C4 and ∆3,
∆4 are determined by the output of the first tier s′, result-
ing in the final output denoted as O. It is noteworthy that
for a fixed query, the first tier operates as a linear time in-
variant system for the sequence. However, in the second
tier, parameters are dynamically adapted to the sequence.
In this way, the query’s cross-modal information directly
guides parameter selection in CM-Mamba, enabling power-
ful cross-modal context-aware reasoning.

The CM-Mamba module can be formulated as:

P1 = (B1,C1,∆1)← q,

P2 = (B2,C2,∆2)← q,

s′ = Mamba1(s,P1)+ Mamba2(reverse(s), P2)

P3 = (B3,C3,∆3)← s′,

P4 = (B4,C4,∆4)← reverse(s′),
O = Mamba3(s,P3)+ Mamba4(reverse(s), P4)

where B,C,∆← r represents the following operations:

B = sB(r)

C = sC(r)

∆ = τ∆(Parameter + s∆(r)).

CM-Mamba-Based Spatial Grounding. In this stage, our
objective is to extract audio-relevant visual features at each
time step. It aligns perfectly with the purpose of our CM-
Mamba, which is designed to prioritize and select cross-
modality relevant information. Leveraging CM-Mamba’s
long-range and multimodal selective modeling, we utilize
information from the audio modality to guide the spatial ag-
gregation of visual features. As illustrated in Fig 3, in our



Figure 2: Our proposed CM-Mamba. Within each Cross-Modality Selective Scan block, bidirectional Mamba parameters are
dynamically generated from the conditional information. The query serves as the condition for the first tier, while the output
from the first tier serves as the condition for the second tier.

Figure 3: Audio-Guided Spatial Grounding. Figure 4: Question-Guided Cross-Modal Temporal Grounding.

spatial grounding module, we employ our CM-Mamba to
extract audio-relevant visual information. Here, the query
consists of audio features: f t

a ∈ RDa at each timestep,
while the sequence consists of the corresponding visual fea-
tures f t

v ∈ R(H×W )×Dv . Drawing inspiration from [7], we
employ two CM-Mamba modules, one along the horizontal
direction and the other along the vertical direction, to ob-
tain the spatially grounded visual feature. Specifically, the
visual features are flattened in horizontal direction and ver-
tical direction, respectively.

CM-Mamba-Based Temporal Grounding. In this stage,
we aim to utilize the question feature as a query to tem-
porally aggregate audio and visual features for question
answering. In Fig. 4, the temporal grounding module
employs our CM-Mamba approach, with the question fea-
ture fq ∈ RDq serving as the query and the audio feature
fa ∈ RL×Da and visual feature fv ∈ RL×Dv sequences
as the candidates. Note that here we made a slight mod-
ification by integrating a direct combination of audio and
visual features, employing two linear projection layers for
each modality, as the first-tier input sequence for both mod-
ules. We empirically found that this approach can achieve
improved modality fusion.

3. Experiments

3.1. Experimental Setup

We conduct our experiments on the MUSIC-AVQA
dataset [6], which contains more than 9K videos annotated
with over 45K QA pairs. We compare our proposed ap-
proach with AVSD [9], LAVIT [11], AVST [6], and AVST
blended with COCA [4]. We evaluate the performance of
AVQA models by measuring their accuracy in predicting
answers to audio, visual, and audio-visual questions. In im-
plementation, we use an LSTM for text encoding and uti-
lize CLIP visual features [8] along with VGGish audio fea-
tures [3]. For a given 60s video segment, our model samples
a subset of 10 frames, along with their corresponding audio.

3.2. Experimental Comparison

The comparison results are shown in Tab. 1. Our
proposed AV-Mamba Model demonstrates superior perfor-
mance compared to other models. Notably, our model
excels in addressing visual questions and temporal ques-
tions. This suggests that our proposed model effectively en-
hances the extraction of both spatial and temporal informa-
tion through its cross-modality selective scan mechanism,



Method Audio Question Visual Question Audio-Visual Question All
Counting Comparative Avg. Counting Location Avg. Existential Location Counting Comparative Temporal Avg. Avg.

AVSD [9] 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
LAViT [11] 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93
AVST [6] 79.74 63.47 73.74 77.61 75.43 76.51 80.97 62.83 73.44 62.49 63.14 68.96 71.80
AVST+COCA [4] 79.94 67.68 75.42 75.10 75.43 75.23 83.50 66.63 69.72 64.12 65.57 69.96 72.33
Ours 81.61 62.79 74.67 78.86 79.67 79.27 82.49 65.33 74.94 61.31 68.13 70.62 73.63

Table 1: Evaluation Results on MUSIC-AVQA. The top-2 results are highlighted.

while also implicitly incorporating positional information.

SG TG A Question V Question AV Question All

AP CA 74.74 76.30 68.56 71.71
WP CA 73.74 76.51 68.96 71.80

CM CA 74.24 77.83 69.09 72.32
CM CM I 75.36 77.99 70.51 73.35
CM CM II 75.61 78.74 70.19 73.41
CM CM III 74.67 79.27 70.62 73.63

Table 2: Ablation Study. SG: spatial grounding, TG: tempo-
ral grounding; AP: average pool, WP: weighted pool, CM:
CM-Mamba, CA: cross-attention.

3.3. Ablation Study

As shown in Tab. 2, we conduct an ablation study to eval-
uate the effectiveness of our proposed modules. We test
three settings for our CM-Mamba in the temporal ground-
ing step. They differ from each other with different in-
puts in each tier. Denote the audio feature sequence and
visual feature sequence as sa, sv , respectively. And let
sav = Linear(sa) + Linear(sv). Let i ∈ {a, v} and
we consider the input sequence for modality i: CM I 1-tier
input sequence: si; 2-tier input sequence: si. CM II 1-
tier input sequence: si; 2-tier input sequence: sav . CM III
1-tier input sequence: sav; 2-tier input sequence: si.

Our proposed CM-Mamba within the spatial grounding
module has significantly enhanced the visual question an-
swering ability, showcasing its efficacy in extracting visual
features. Additionally, the application of CM-Mamba in
the temporal grounding module, where we integrate ques-
tion, audio, and visual features, has resulted in a higher total
score, further substantiating the effectiveness of our cross-
modality selective scan method.

The results across three distinct settings of the CM-
Mamba are close, with a slightly higher score observed in
the third setting. This suggests that incorporating straight-
forward fusion techniques at the intermediate stage could
potentially enhance performance.

4. Conclusion
In this paper, we investigate the efficacy of leverag-

ing the selectivity of the Mamba module to capture rele-
vant cross-modality information. Our experimental results

on the MUSIC-AVQA dataset highlight the superiority of
our AV-Mamba framework for AVQA and showcase the
promising cross-modality capabilities of our CM-Mamba.
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