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Data distillation aims to learn a condensed dataset such
that it retains most of the essential information of the en-
tire training data. Recent progress in data distillation tech-
niques [1, 8, 9] have achieved remarkable performance on
the image datasets but their potential in other domains re-
mains largely underexplored. With the recent advance-
ments in audio-visual learning [5], the size of audio-visual
datasets [2, 5] has significantly increased, which leads to the
heavy storage and computational cost of training on these
datasets. In this work, we investigate the extension of data
distillation to the audio-visual domain. Unlike image distil-
lation [1, 8], audio-visual distillation presents unique chal-
lenges: preserving complex cross-modal correlations and
addressing unique complexities due to high-resolution im-
ages and the additional audio modality.

To explore this new problem, we first extend the dis-
tribution matching [8] approach to separately train visual-
only and audio-only distilled data. This helps us to demon-
strate the advantage of audio-visual integration with dis-
tilled data and analyze the impact of different multimodal
fusion methods on audio-visual event recognition perfor-
mance. We then introduce two novel matching losses: joint
matching loss and modality gap matching loss to distill the
alignment between the condensed (synthetic) data from the
original data. Additionally, we enhance the initialization
process and storage for the synthetic data. Comprehensive
experiments on recognition and cross-modal retrieval tasks
demonstrate the representativeness and audio-visual align-
ment of our distilled data.

1. Method

Problem Formulation. Let xai and xvi denote the audio
waveform and video frame of the i-th sample, respectively,
with xavi = (xai , x

v
i ) and yi as the corresponding ground

truth category label. Given a large audio-visual training set
T = {xavi , yi}|T |

i=1, our audio-visual data distillation task
aims to learn a smaller, yet representative synthetic set S =

{savi , yi}|S|
i=1, where savi = (sai , s

v
i ). This dataset S, with

significantly fewer samples |S| ≪ |T |, should encapsulate
the essential information contained in T . The goal is for
models trained on each T and S to perform similarly on

unseen test data:

E(xav,y)∼D [ℓ(ϕθT (x
av), y)] ≃ E(xav,y)∼D [ℓ(ϕθS (x

av), y)] ,

where D is the real test data, ℓ is the loss function (i.e. cross-
entropy), ϕθ is a neural network parameterized by θ, and
ϕθT and ϕθS are networks trained on T and S respectively.

1.1. Audio-Visual Data Distillation

Our overall approach is illustrated in Fig. 1.
Vanilla Audio-Visual Distribution Matching. Distribu-
tion matching (DM) [8] generates synthetic data by min-
imizing the feature distance between the distributions of
real and synthetic samples. Specifically, DM minimises the
visual-only loss Lv

base,

Lv
base = || 1

|Tv|

|Tv|∑
i=1

ψθv (Aω(x
v
i ))−

1

|Sv|

|Sv|∑
j=1

ψθv (Aω(s
v
j ))||2,

where ψθv denotes randomly initialized visual network and
Aω(·) is differential siamese augmentation. The vanilla ap-
proach to audio-visual distribution matching extends this
visual-only loss to optimize the following objective:

Lav
base = La

base + Lv
base. (1)

Where, La
base is the simple adaption of DM to audio-

modality. A simple extension of vanilla DM for cross-
modal alignment is restricted due to the modality gap cre-
ated by the use of randomly initialized feature networks
ψθv , ψθa . Hence we propose joint matching and modality
gap matching losses.
Joint Matching (JM). This loss function effectively aligns
the joint audio-visual distributions between real (Dr) and
synthetic (Ds) data, enabling implicit cross-modal distribu-
tion matching. The loss is formally defined for each class
as follows:

Dr = R̄a + R̄v =

[
1

|Ta|

|Ta|∑
i=1

ψθa (Aω(x
a
i )) +

1

|Tv |

|Tv|∑
i=1

ψθv (Aω(x
v
i ))

]
,

Ds = S̄a + S̄v =

[
1

|Sa|

|Sa|∑
j=1

ψθa (Aω(s
a
j )) +

1

|Sv |

|Sv|∑
j=1

ψθv (Aω(s
v
j ))

]
,
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Figure 1. Overview of our audio-visual data distillation framework.

Lav
JM = ||Dr −Ds||2, (2)

Optimizing this loss term effectively compels our model
to learn synthetic audio-visual data {Sa,Sv} that closely
resembles and represents the real dataset {Ta, Tv}. Here,
the loss term in Eq. 2 can be re-written as Lav

JM = ||(R̄a +
R̄v) − (S̄a + S̄v)||2 = ||(R̄a − S̄v) + (R̄v − S̄a)||2 ≤
||(R̄a−S̄v)||2+||(R̄v−S̄a)||2. This formulation reveals that
the loss implicitly enforces cross-modal matching between
real audio data and synthetic visual data, as well as between
real visual data and synthetic audio data.
Modality Gap Matching (MGM). Besides the JM loss,
we introduce further constraints to align the distributions
of (R̄a and S̄v) and (R̄v and S̄a), as follows:

Dav =

[
1

|Ta|

|Ta|∑
i=1

ψθa(Aω(x
a
i )) +

1

|Sv|

|Sv|∑
j=1

ψθv (Aω(s
v
j ))

]

Dva =

[
1

|Tv|

|Tv|∑
i=1

ψθv (Aω(x
v
i )) +

1

|Sa|

|Sa|∑
j=1

ψθa(Aω(s
a
j ))

]
Lav
MGM = ||Dav −Dva||2 (3)

This additional loss ensures that the synthetic data closely
represent the corresponding real data without misaligning
the existing matches of S̄a ↔ R̄a and S̄v ↔ R̄v enforced
in unimodal DM and (S̄a + S̄v) ↔ (R̄a + R̄v). With a
simple re-writing, we can obtain Lav

MGM = ||(R̄a + S̄v) −
(R̄v+S̄a)||2 = ||(R̄a−R̄v)−(S̄a−S̄v)||2. We can see that
it will help to align the modality gap between real and syn-
thetic data to strengthen the joint audio-visual distribution
matching.
Final Loss. To generate synthetic audio and visual data si-
multaneously, we will jointly optimize the three loss terms:

Lav
final = Lav

base + λJM · Lav
JM + λMGM · Lav

MGM . (4)

Here λJM and λMGM are the weights for joint matching
and modality gap matching losses respectively. These three
loss terms work collaboratively to enhance the audio-visual
data distillation process. Their combined effect ensures that
the synthetic data closely corresponds to the real data, align-
ing unimodal, cross-modal, and modality gap distributions
effectively.
Improved initialization and storage. To further improve
our synthetic data, we use two techniques: herding-based
initialization [7] for better alignment with real data, and fac-
tor technique [9] for increasing extracted features without
extra store cost.

2. Experiments
Following the evaluation protocols from previous data

distillation studies [1, 8], we use audio-visual event recog-
nition as the main proxy task to assess the classification ac-
curacy on held-out test data of deep networks trained from
scratch on our distilled audio and visual data.
2.1. Experimental Settings
Datasets. We use VGGS-10k, a randomly selected subset
of 10 classes from VGGSound [2], and AVE [5]. Each data
point represents a one-second video clip, comprising a cen-
ter frame(of 224x224 size) and its corresponding audio.
Baselines. We compare our approach with vanilla
approach-based coreset selection methods: random, herd-
ing [7] and training set synthesis methods: MTT [1] and
DM [8].
Evaluation. We report the mean recognition accuracy and
standard deviation of 3 runs where the model is randomly
initialized and trained for 30 epochs using the learned syn-
thetic data. Each run consists of 5000 iterations. We eval-
uate over 3 images-per-class (IPC) settings and keep the
training setup similar to [6] to train the audio-visual models.



Table 1. Recognition results with synthetic audio(A), visual(V), and audio-visual(AV) data on VGGS-10K. For AV we use ensemble fusion
over individually learned audio and visual synthetic data.

Coreset Selection Training Set Synthesis
Random Herding [7] MTT [1] DM [8] Whole data

IPC A V AV A V AV A V AV A V AV A V AV

1 14.27±0.97 11.65±1.45 15.44±1.87 26.32±1.57 14.72±2.87 20.77±2.77 30.99±1.48 24.15±2.25 34.13±3.62 29.60±2.33 26.40±1.10 36.54±2.52

62.07±0.54 48.19±0.54 68.24±0.7510 32.01±1.64 22.71±1.57 32.50±2.03 34.58±1.98 28.9±1.44 39.89±1.64 36.57±2.57 25.41±1.58 36.79±1.97 33.60±1.35 31.63±1.96 43.85±1.75

20 36.78±2.88 31.05±1.17 45.10±2.31 44.11±1.47 34.58±0.84 50.20±0.74 45.73±1.03 29.52±1.43 51.87±1.26 38.93±3.52 35.23±1.16 49.01±2.44

Table 2. Audio-visual event recognition results for different fu-
sion methods and images per class (IPC) on VGGS-10K. Ensem-
ble consistently achieves the highest accuracy.

Audio-Visual Fusion
Concat Sum Attention [5] Ensemble

IPC
1 33.77±1.65 34.72±1.27 9.97±0.83 36.54±2.52

10 41.71±1.27 40.49±1.83 10.11±0.35 43.85±1.75

20 46.59±1.34 46.05±1.74 11.10±1.88 49.01±2.44

2.2. Experimental Results

Audio-visual integration. Firstly, we compared the ef-
fect of audio-visual integration in the case of distilled
data. The results, shown in Tab.1, clearly demonstrate that
audio-visual integration consistently outperforms unimodal
modalities in most cases.
Multimodal Fusion. Next, we investigated the effect of
different audio-visual fusion strategies on the performance
of models trained on distilled synthetic data. From the re-
sults in Tab. 2, we can see that the ensemble method consis-
tently outperforms other approaches in all image-per-class
settings. The comparatively low fusion results in attention
fusion can be accounted for classwise alignment losses, spa-
tial distortions (as shown in Fig. 2), and a larger number of
trainable model parameters. Consequently, we employ the
ensemble fusion for further experiments.

Comparison with Data Distillation Baselines. Finally,
we compared the performance of audio-visual recognition
with dataset distilled using ours and previous approaches.
From the results in Tab. 3, we observe that our audio-visual
data distillation approach consistently outperforms the other
baseline approaches. A large improvement over vanilla
audio-visual distillation with DM demonstrates the effec-
tiveness of incorporating joint matching losses to strengthen
cross-modal alignment. In addition, similar to previous
image-only distillation methods [1], we observe diminish-
ing returns as IPC increases. For instance, in VGGS-10k,
there’s a significant performance jump from 40.41% to
54.99% when moving from 1 to 10 IPC, while the improve-
ment from 10 to 20 IPC is more modest, reaching 58.04%.
Ablation Study. To validate the contributions of two novel
joint audio-visual losses and herding initialization and fac-
tor technique, we conducted an ablation study by systematic
addition. The ablation study results are shown in Tab. 4,
from which we can see that each of the proposed parts has
a positive influence on the final result.

Original IPC=1 IPC=10 IPC=50

Figure 2. Visualization of distilled audio-visual data. With an IPC
increase, the synthetic data gets far less away from initialization.

OursDMMTT

Figure 3. Distribution plot of synthetic audio-visual data (IPC=10)
learned by DM, and Ours(factor=1), with same initilization.
(green,blue), (red,black) and (purple,yellow) points are the real
(audio, visual) points for the first 3 classes of VGGS-10k. The
synthetic (audio, visual) data is represented by (⋆, ▲). We ob-
serve that Our synthetic audio and visual distributions better re-
semble the real distributions.

Table 4. Ablation study on the different components at IPC=10.
Random Herding Factor Base JM MGM VGGS-10k AVE

✓ 32.01±1.64 20.00±1.45

✓ 39.89±1.64 26.86±0.52

✓ ✓ 40.28±2.34 31.80±1.28

✓ ✓ ✓ 45.31±2.68 34.80±1.68

✓ ✓ ✓ ✓ 49.07±1.97 35.13±1.14

✓ ✓ ✓ ✓ ✓ 54.99±1.73 36.82±0.88

Visualization. To showcase our distilled data, we plot the
learned audio and visual data in Fig. 2 at different IPCs. We
observe that with increased IPC, the synthetic data remains
perceptually closer to the original audio-visual sample. Ad-
ditionally, we compare the data distribution of the first three
classes of VGGS-10k in Fig. 3. It shows how our approach
better captures the underlying distribution of real data.

2.3. Audio-Visual Retrieval

We have demonstrated that audio-visual distilled data fa-
cilitates the learning of effective audio-visual representa-
tions for audio-visual event recognition. To further examine
the audio-visual alignment, we investigate whether distilled
data could help learn a well-coordinated audio-visual space



Table 3. Comparison with previous data distillation methods for audio-visual event recognition. Ratio(%): the ratio of condensed images
to the whole training set. Whole Data: ConvNet model trained on the whole training set and is the upper bound. ‘-’ refers to configurations
for which the method couldn’t scale up.

IPC Ratio% Coreset Selection Training Set Synthesis
Random Herding [7] MTT [1] DM [8] Ours Whole data

VGGS-10K
1 0.11 15.44±1.87 20.77±2.11 34.13±3.62 36.54±2.52 40.41±1.81

68.24±0.7510 1.13 32.01±1.64 39.89±1.64 36.79±1.97 43.85±1.75 54.99±1.73

20 2.26 45.1±2.31 50.2±0.74 51.87±1.26 49.01±2.44 58.04±1.68

AVE
1 0.10 10.07±1.16 11.84±0.4 12.13±0.41 21.70±1.46 23.00±1.37

52.20±0.3810 1.0 20.0±1.45 26.86±0.52 23.15±0.95 28.14±1.80 36.82±0.88

20 2.0 26.32±1.01 33.04±0.38 - 32.57±0.97 40.13±1.00

Table 5. Audio-visual retrieval results. Whole data is the upper
bound and is trained using the entire training data. We observe
that our approach helps to distill better audio-visual alignment.

Method VGGS-10k test subset AVE test subset
R@1↑ R@5↑ MedR↓ R@1↑ R@5↑ MedR↓

A→V

Random 13.33±5.03 52.00±14.00 5.83±1.75 7.62±3.21 30.23±4.06 12.33±2.30

DM [8] 8.66±1.15 47.33±5.77 6.66±1.52 6.90±2.29 32.14±0.71 11.16±1.75

Ours 19.33±2.30 59.33±1.15 3.66±0.57 13.09±2.88 35.00±1.88 9.00±0.00

Whole data 44.00±2.00 74.00±5.03 2.00±0.00 27.61±5.35 51.66±4.06 4.66±1.15

V→A
Random 10.66±2.30 49.33±5.77 6.00±0.86 9.04±1.48 26.66±2.29 16.00±2.00

DM [8] 11.33±3.05 44.00±4.00 6.66±1.15 10.95±3.59 29.52±3.52 14.33±3.25

Ours 27.33±2.30 59.33±7.02 3.83±0.57 6.43±3.11 34.52±3.30 10.16±1.60

Whole data 45.33±5.03 76.00±2.00 1.83±0.28 17.14±0.71 44.76±1.79 7.16±0.288

for audio-visual retrieval.
Since our DM-based audio-visual distillation model fo-

cuses on semantic alignment rather than instance-level
alignment, we evaluate audio-visual retrieval in a class-
wise setting. Following [3], we create a retrieval test set
by uniformly sampling a subset of five audio-visual sam-
ples per class from the original test split. We train the
same recognition-based audio and visual ConvNet architec-
ture model with a shared classifier [4] and ArcFace margin
loss. The shared classifier and margin loss help to learn
a joint-modal embedding space with angular margins be-
tween classes. We train the model from scratch using the
distilled data of IPC=20 and the same learning setting as the
classification model. We use these trained audio and visual
components to get the corresponding representation of test
samples and calculate the class retrieval recall at rank 1, 5,
and median rank based on the cosine similarity. The results
of audio-to-visual and visual-to-audio retrieval, in Tab. 5,
demonstrate that our losses help distill audio-visual align-
ment (from real data) and hence our method outperforms
DM in almost all scenarios.

3. Conclusion

In this paper, we explore a new task of multimodal dis-
tillation using audio-visual data. To evaluate the distilled
audio-visual data, we use audio-visual event recognition as
the proxy task. Experimental results on two audio-visual
datasets show that our proposed approach outperforms other
methods consistently and audio-visual integration with con-
densed data is still helpful. This provides a new direction in
the data distillation domain.
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