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1. Introduction
Humans can effortlessly separate and identify individual
sound sources in daily experience. This skill plays a cru-
cial role in our ability to understand and interact with the
complex auditory environments that surround us. Inspired
by the multisensory perception of humans, audio-visual
sound separation aims to tackle this challenge by utiliz-
ing visual information to guide the separation of individual
sound sources in an audio mixture. Recent advances in deep
learning have led to significant progress in audio-visual
sound separation [2, 4, 11, 12, 14, 16]. However, a limi-
tation of recent studies in audio-visual domain is their focus
on scenarios where all sound source classes are presently
known, overlooking the potential inclusion of unknown
sound source classes during inference. This oversight leads
to the catastrophic forgetting problem [1, 7] How to ef-
fectively leverage visual guidance to continuously separate
sounds from new categories while preserving separation
ability for old sound categories remains an open question.
To bridge this gap, we propose a novel approach named
ContAV-Sep (Continual Audio-Visual Sound Separation)
by integrating audio-visual sound separation with contin-
ual learning principles. In our ContAV-Sep framework, we
introduce a novel Cross-modal Similarity Distillation Con-
straint (CrossSDC) to not only maintain the cross-modal
semantic similarity through incremental tasks but also pre-
serve previously learned knowledge of semantic similarity
in old models to counter catastrophic forgetting.

2. Method
2.1. Problem Formulation

Audio-Visual Sound Separation. Audio-visual sound
separation aims to separate distinctive sound signals ac-
cording to the given associated visual guidance. Follow-
ing previous works [2, 4, 12], we adopt the common “mix-
and-separation” training strategy to train the model. Given
two videos V 1(s1,v1) and V 2(s2,v2), we can obtain the
input mixed sound signal S by mixing two video sound
signals s1 and s2, and then we can have the ratio masks

mask1 = s1/S and mask2 = s2/S The goal of the task
is to utilize the corresponding visual guidance v1 and v2 to
predict the ratio masks for reconstructing the two individual
audio signals. And then, the original sound signals s1 and
s2 are used to calculate the loss function for optimizing the
model:

Θ∗ = argmin
Θ

E(V 1,V 2)∼D

[
L( ˆmask

1
,mask1)

+L( ˆmask
2
,mask2)

]
,

(1)

where D denotes the training set, and L is the loss function
between the prediction and ground-truth.
Continual Audio-Visual Sound Separation. Our pro-
posed continual audio-visual sound separation aims to train
a model FΘ continually on a sequence of T separation tasks
{T1, T2, ..., TT }. For the t-th task Tt (incremental step t),
we have a training set Dt = {V i(si,vi), yit}nt

i=1, where i
and nt denote the i-th video sample and the total number of
samples in Dt respectively, and yit ∈ Ct is the correspond-
ing sound source class of video V i, where Ct is the training
sound class label space of task Tt. For any two tasks Tt1 and
Tt2 and their corresponding training sound class label space
Ct1 and Ct2 , we have Ct1 ∩ Ct2 = ∅. For a task Tt, where
t > 1, holding a small size of memory/exemplar set Mt to
store some data from old tasks is permitted in our setting.
Therefore, with the memory/exemplar set, all available data
that can be used for training in task Tt (t > 1) can be de-
noted as D′

t = Dt ∪ Mt. Finally, the training process of
Eq. 1 in our continual audio-visual sound separation setting
can be denoted as:

Θt = argmin
Θt−1

E(V 1,V 2)∼D′
t

[
L( ˆmask

1
,mask1)

+L( ˆmask
2
,mask2)

]
,

s.t. ˆmask
1
= FΘt−1

(S,v1), ˆmask
2
= FΘt−1

(S,v2),

(2)

which means that, the new model Θt is obtained by updat-
ing the old model Θt−1 which was trained on the previous
task, using current task’s available data D′

t.
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Figure 1. Overview of our proposed ContAV-Sep

2.2. Overview

An overview of our proposed ContAV-Sep is illustrated
in Fig. 1. The ContAV-Sep consists of a separation
base model, an output mask distillation module, and our
proposed Cross-modal Similarity Distillation Constraint
(CrossSDC). We use the state-of-the-art audio-visual sep-
arator: iQuery [2] as the base model of our approach, which
contains a video encoder to extract the global motion fea-
ture, an object detector and image encoder to obtain the ob-
ject feature, a U-Net [10] for mixture sound encoding and
separated sound decoding, and an audio-visual Transformer
to get the separated sound feature through multi-modal
cross-attention mechanism and class-aware audio queries.

2.3. Cross-modal Similarity Distillation Constraint

According to [8, 9], cross-modal semantic correlation in
audio-visual modeling tends to diminish during subsequent
incremental phases, which leads to catastrophic forgetting
in our continual audio-visual sound separation task. We
propose a novel Cross-modal Similarity Distillation Con-
straint (CrossSDC) that serves two crucial purposes (1)
maintaining cross-modal semantic similarity through incre-
mental tasks, and (2) preserve previous learned semantic
similarity knowledge from old tasks.

CrossSDC incorporates the cross-modal similarity
knowledge acquired from previous tasks into the contrastive
loss. This integration not only facilitates the learning of
cross-modal semantic similarities in new tasks but also en-
sures the preservation of previously acquired knowledge. In
the incremental step t (t > 1), the instance-aware part of our
CrossSDC can be formulated as:

Linst. = −EV i∼D′
t[

1∑
j 1[i=j]

∑
j 1[i = j] log

exp(sim(f
mod1
τ,i ,f

mod2
τ,j ))∑

j exp(sim(f
mod1
τ,i ,f

mod2
τ,j ))

]
,

(3)

where 1[i = j] is an indicator that equals 1 when i = j,

denoting that video samples V i and V j are the same video;
The sim function represents the cosine similarity function
with temperature scaling;

To preserve the semantic similarity within each class
across incremental tasks, we also incorporate a class-aware
component specifically designed for inter-class cross-modal
semantic similarity, which can be formulated as:

Lcls. = −E(V i,yi)∼D′
t[

1∑
j 1[y

i=yj ]

∑
j 1[y

i = yj ] log
exp(sim(f

mod1
τ,i ,f

mod2
τ,j ))∑

j exp(sim(f
mod1
τ,i ,f

mod2
τ,j ))

]
.

(4)

So, visual and audio features from two videos are encour-
aged to be close when they belong to the same class. The
overall formulation of our CrossSDC is as follows:

LCrossSDC = λinsLins + λclsLcls, (5)

where λins and λcls are two scalars that balance the contri-
butions of the two loss terms.

2.4. Overall Loss Function

To effectively combine CrossSDC with the overall objec-
tive, we incorporate it alongside output distillation and the
main separation loss function.

In our approach, we distill knowledge for data from the
memory set and utilize the output of the old model as the
distillation target to preserve this knowledge.

Ldist. = E(V i
1,V

i
2)∼Mt

[
|| ˆmask

1

t − ˆmask
1

t−1||1

+|| ˆmask
2

t − ˆmask
2

t−1||1
]
,

(6)

where ˆmask
1

t−1 and ˆmask
2

t−1 are predicted masks gen-
erated by the old model that is trained at incremental step
t − 1. For the loss function here, we follow [2, 15] and
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Figure 2. Left: A randomly selected sample with its frame and ground-truth spectrum. Right: Visualization of the separated sound by our
ContAV-Sep and baselines at each incremental step.

adopt the per-pixel L1 loss [15]. For the main separation
loss function, we also apply the per-pixel L1 loss:

Lmain = E(V i
1,V

i
2)∼Mt

[
|| ˆmask

1

t −mask1||1

+|| ˆmask
2

t −mask2||1
]
,

(7)

Finally, our overall loss function is denoted as:

LContAV−Sep = Lmain+λdist.Ldist.+LCrossSDC , (8)

2.5. Management of Memory Set

Our proposed framework maintains a compact memory set
throughout incremental updates. We randomly select exem-
plars for each current class and combining these new exem-
plars with the existing memory set.

3. Experiments
3.1. Experimental Setup

Dataset. Follow common practice [2, 17], we conducted
experiments on MUSIC-21 [16], which contains solo videos
of 21 instruments categories.
Baselines. We compare our proposed approach with
vanilla Fine-tuning strategy, and continual learning meth-
ods EWC [5] and LwF [7]. We also select two state-of-the-
art continual semantic segmentation methods PLOP [3] and
EWF [13] as our baselines.
Evaluation. We follow previous works [2, 12] in sound
separation, and evaluate the performance of all the methods
using: Signal to Distortion Ratio (SDR), Signal to Interfer-
ence Ratio (SIR), and Signal to Artifact Ratio (SAR). For
all these three metrics, higher values denote better results.

3.2. Experimental Comparison

The main experimental comparisons are shown in Tab. 1.
Our proposed method, ContAV-Sep, outperforms state-of-

Table 1. Main results of different methods on MUSIC-21 dataset

Method SDR↑ SIR↑ SAR↑
w/o memory
Fine-tuning 3.46 9.30 10.57
LwF [7] 3.45 8.78 10.66
EWC [6] 3.67 9.58 10.30
PLOP [3] 3.82 10.06 10.22
EWF [13] 3.98 9.68 11.52

w/ memory
LwF [7] 6.76 12.77 12.60
EWC [6] 6.65 13.01 11.73
PLOP [3] 7.03 13.30 11.90
EWF [13] 5.35 11.35 11.81
ContAV-Sep (Ours) 7.33 13.55 13.01

Upper Bound (Oracle) 10.36 16.64 14.68

the-art baselines by a substantial margin. Notably, ContAV-
Sep achieves a 0.3 improvement in SDR over the best com-
pared method. Additionally, our method surpasses the top
baseline by 0.25 in SIR and 0.41 in SAR.

Our observations further demonstrate that retaining a
small memory set significantly enhances the performance
of each baseline method. For instance, equipping LwF [7]
with a small memory set results in improvements of 3.31,
3.99, and 1.94 on SDR, SIR, and SAR, respectively. Our
method is consistently observed to outperform others in
terms of SDR at all incremental steps.

3.3. Ablation Study on CrossSDC

In this subsection, we conduct an ablation study to inves-
tigate the effectiveness of our proposed CrossSDC. By re-
moving single or multiple components of the CrossSDC,
we evaluate the impact of each on the final results. The re-
sults of the ablation study are presented in Tab. 2. From the
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Table 2. Ablation study on our proposed ContAV-Sep. Our full
approach achieves best results compared to the variants.

ContAV-Sep

Ldist. Linst. Lcls. SDR↑ SIR↑ SAR↑
" % % 6.32 12.99 11.82
" " % 6.01 11.92 11.74
" % " 6.86 13.12 12.25
" " " 7.33 13.55 13.01

Table 3. Results of ContAV-Sep with different memory size

ContAV-Sep

# of sample per class SDR↑ SIR↑ SAR↑
1 7.33 13.55 13.01
2 7.26 13.10 12.65
3 7.88 13.66 13.43
4 8.16 14.16 13.21

table, we can see that our full model achieves the best per-
formance compared to the variants, which further demon-
strates the effectiveness of our proposed CrossSDC.

3.4. Effect on Memory Size

The default setting of the memory size is 1 sample per old
classes.We conduct experiments by increasing the memory
size from 1 sample per old classes to 4 samples per old
classes. The results are shown in Tab. 3.

3.5. Visualization of Separated Sounds

Figure 2 presents a visualization of the separated results
across successive incremental steps. We highlight the area
at the top right part of the spectrum.

4. Conclusion

In this paper, we explore training audio-visual sound sepa-
ration models under a more practical scenario of continual
learning, and propose the continual audio-visual sound sep-
aration task. To tackle our proposed new problem, we pro-
pose ContAV-Sep, which involves a Cross-modal Similarity
Distillation Constraint (CrossSDC) to maintain cross-modal
semantic similarity through incremental tasks, as well as
preserving previous learned semantic similarity knowledge
from old tasks. Experimental results on the MUSIC-21
dataset demonstrate the superiority of our method in our
proposed continual audio-visual sound separation task.

Acknowledgments. This work was supported in part by
a Cisco Faculty Research Award, an Amazon Research
Award, and a research gift from Adobe. The article solely
reflects the opinions and conclusions of its authors but not
the funding agents.

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
1

[2] Jiaben Chen, Renrui Zhang, Dongze Lian, Jiaqi Yang, Ziyao
Zeng, and Jianbo Shi. iquery: Instruments as queries for
audio-visual sound separation. In CVPR, 2023. 1, 2, 3

[3] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and
Matthieu Cord. Plop: Learning without forgetting for con-
tinual semantic segmentation. In CVPR, 2021. 3

[4] Ruohan Gao and Kristen Grauman. Co-separating sounds of
visual objects. In ICCV, 2019. 1

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. PNAS, 2017. 3

[6] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee.
Overcoming catastrophic forgetting with unlabeled data in
the wild. In ICCV, 2019. 3

[7] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE TPAMI, 2017. 1, 3

[8] Shentong Mo, Weiguo Pian, and Yapeng Tian. Class-
incremental grouping network for continual audio-visual
learning. In ICCV, 2023. 2

[9] Weiguo Pian, Shentong Mo, Yunhui Guo, and Yapeng Tian.
Audio-visual class-incremental learning. In ICCV, 2023. 2

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 2

[11] Yiyang Su, Ali Vosoughi, Shijian Deng, Yapeng Tian, and
Chenliang Xu. Separating invisible sounds toward universal
audiovisual scene-aware sound separation. arXiv preprint
arXiv:2310.11713, 2023. 1

[12] Yapeng Tian, Di Hu, and Chenliang Xu. Cyclic co-learning
of sounding object visual grounding and sound separation.
In CVPR, 2021. 1, 3

[13] Jia-Wen Xiao, Chang-Bin Zhang, Jiekang Feng, Xialei Liu,
Joost van de Weijer, and Ming-Ming Cheng. Endpoints
weight fusion for class incremental semantic segmentation.
In CVPR, 2023. 3

[14] Yuxin Ye, Wenming Yang, and Yapeng Tian. Lavss:
Location-guided audio-visual spatial audio separation. In
WACV, 2024. 1

[15] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-
drick, Josh McDermott, and Antonio Torralba. The sound of
pixels. In ECCV, 2018. 2, 3

[16] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Tor-
ralba. The sound of motions. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1735–
1744, 2019. 1, 3

[17] Lingyu Zhu and Esa Rahtu. Visually guided sound source
separation and localization using self-supervised motion rep-
resentations. In WACV, 2022. 3

4


	. Introduction
	. Method
	. Problem Formulation
	. Overview
	. Cross-modal Similarity Distillation Constraint
	. Overall Loss Function
	. Management of Memory Set

	. Experiments
	. Experimental Setup
	. Experimental Comparison
	. Ablation Study on CrossSDC
	. Effect on Memory Size
	. Visualization of Separated Sounds

	. Conclusion

