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1. Introduction
The quest for the understanding of human’s cocktail

party effect and the implementation of automatic speech
separation has never stopped. Recently, speech separa-
tion systems like [6, 7] achieved remarkable performance,
benefiting downstream tasks such as speech recognition
[19] and speech translation [8]. However, these systems
have limitations, requiring the number of speakers in ad-
vance and sometimes facing the speaker permutation prob-
lem [6]. Target speaker extraction (TSE) seeks to extract
target speaker’s voice from a mixture conditioned on certain
cues [20]. Such a task is more consistent with the human se-
lective auditory attention process in a cocktail party [11].

For effective TSE, the choice of proper speaker cues re-
mains a topic of study. Some studies explore the use of tar-
get speech clips as speaker cues [21, 18, 5]. However, these
techniques suffer from mismatches like different recording
scenarios and intra-speaker speech variety [20]. To address
these bottlenecks, more stable and noise-invariant visual
cues are utilized. AV-ConvTasNet employs a pre-trained
visual speech recognition (VSR) encoder to extract target
speaker features [17]. MuSE introduces an additional au-
dio encoder to verify target speaker [10]. Nevertheless,
practical scenarios may have lip occlusion issues [4], such
as camera movements or speakers turning around, altering
their frontal view. ImagineNET [12] tackles this by using
extra visual refiner blocks to compensate for missing vi-
sual cues. Considering the noise and reverberation invari-
ant properties as well as the advanced solutions for visual
occlusion, lip movements remain the most effective target
speaker cue for the TSE systems.

Recently, AV-HuBERT achieved great success in lip-
reading tasks, showing its strong ability to capture audio-
visual synchronization [15, 1]. To benefit from such ro-
bust audio-visual synchronization knowledge, we integrate
pre-trained AV-HuBERT layers into our TSE system. Fur-
thermore, to facilitate the alignment between audio fea-
ture space and visual feature space, a novel Mask-And-
Recovery (MAR) strategy has been applied to our TSE sys-
tem. With the integrated AV-HuBERT layers and additional
MAR strategy, we propose the AVHuMAR-TSE system.
The contributions of this paper could be summarized in
three folds:

• First, we integrate the pre-trained AV-HuBERT layers
into our proposed audio-visual TSE system, which is
called the AVHuBERT-TSE system. To the best of our
knowledge, this is the first attempt to combine the AV-
TSE system with the audio-visual foundation model.

• To enhance both intra and inter-modality alignments,
we further propose the AVHuMAR-TSE system,
which jointly optimizes the pre-trained AVHuBERT-
TSE system and the integrated MAR block. Experi-
mental improvements demonstrate the effectiveness of
the proposed Mask-And-Recovery (MAR) strategy.

• To verify the effectiveness of the proposed MAR strat-
egy, we experiment with different mask durations for
the mixture speech and find the best configuration for
our AVHuMAR-TSE system.

2. Method

2.1. AVHuBERT-TSE system

The overview structure of the AVHuBERT-TSE system
is shown in Fig 1 (a). The speech encoder, speech decoder,
and visual encoder follow the structure in MuSE [10]. The
visual adapter follows the structure in reentry [11]. The
contribution is the speaker extractor, shown in Fig 1 (c).
Specifically, the speaker extractor block will be repeated r
times, at each speaker extractor block, the intermediate es-
timated target speech Sr−1

(t) will align with target visual cue
V r−1
(t) temporally. The refined visual cue will be obtained

after passing through the pre-trained AV-HuBERT layers.
Two symmetric Conv1D adapters will be inserted to help
the model adapt to the pre-trained weights.

2.2. AVHuMAR-TSE system

Except for the visual cues, the intermediate estimated
target speech frames contain rich contextual information
and target speaker features, which could also guide the ex-
traction process and reduce the significant reliance on vi-
sual cues. Instead of extracting intermediate target speech
features explicitly, we propose a novel Mask-And-Recover
strategy to learn both inter and intro-modality correlations
implicitly.
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Figure 1. The overall architecture of the proposed AVHuMAR-TSE system

As shown in Fig 1 (b), an additional MAR Block will be
inserted between the speech decoder and the final speaker
extractor. As the name described, certain frames of the
mixture speech waveform x0

(t) will be masked. Note that
the masked region of the mixture speech embedding X0

(t)

may be temporally compressed after passing through the
speech encoder. For generalization consideration, an auto-
matic masked frame detection step is necessary. According
to the detected masked regions, a mask I(t) and an inverse
mask I(t) will be generated for loss computation.

The MAR Block plays two roles in the AVHuMAR-TSE
system. First, it will be used to predict the masked target
speech embedding. In this process, the unmasked target
speech embedding region could provide rich speech con-
text information and push the model to learn intra-modality
correlation. The refined visual cues could push the model
to learn a direct mapping between the target speaker’s lip
movements and the masked speech embedding region. Sec-
ond, the MAR Block will be jointly optimized with the
AVHuBERT-TSE system, thereby enabling further refine-
ment of the estimated target speech embedding from the
AVHuBERT-TSE system. To perform the embedding level
loss, the ground truth of the target speech waveform y(t)
will be input to a speech encoder to get its embedding Y(t).
2.3. Two-stage training strategy and loss functions

During the first training stage, only the scale-invariant
signal-to-noise ratio (SI-SDR) will be calculated for the
AVHuBERT-TSE system, which is shown in (1),

LSI−SDR(yt, ŝt) = −10 log10(

||<ŝt,yt>yt||2
||yt||2

||ŝt − <ŝt,yt>yt

||yt||2 ||
). (1)

LRECOV ER(X̂
Rm

(t) , Y m
(t)) = MSE(X̂Rm

(t) , Y m
(t)),

LTSE Embedding(X̂
Ru

(t) , Y
u
(t)) = MSE(X̂Ru

(t) , Y
u
(t)),

where,

X̂Rm

(t) = X̂R
(t) ⊙ I(t), Y

m
(t) = Y(t) ⊙ I(t),

X̂Ru

(t) = X̂R
(t) ⊙ I(t), Y

u
(t) = Y(t) ⊙ I(t).

(2)
During the second training stage, besides SI-SDR, two

extra mean squared error (MSE) [3] losses will be added.
To recover the masked embedding region, one MSE loss
will be added to the masked region of X̂R

(t), which is called
LRECOV ER. To refine the TSE performance, another MSE
loss will be added to the unmasked region of X̂R

(t), which
is called LTSE Embedding . The details are described in
(2), Specifically, X̂Rm

(t) and Y m
(t) denote the masked region

of predicted target speech embedding and corresponding
ground truth embedding. X̂Rm

(t) and Y m
(t) are obtained by

the element-wise multiplication of the inverse mask I(t) and
X̂R

(t), Y(t), respectively. The X̂Ru

(t) and Y u
(t) are obtained in

the similar way.

L(yt, ŝt, X̂
Rm

(t) , Y m
(t), X̂

Ru

(t) , Y
u
(t))

=α ∗ LSI−SDR(yt, ŝt) + β ∗ LRECOV ER(X̂
Rm

(t) , Y m
(t))

+ γ ∗ LTSE Embedding(X̂
Ru

(t) , Y
u
(t)),

(3)
The loss function for the AVHuMAR-TSE system is pre-
sented in (3), we use α, β, γ as scale factors to balance three
parts, respectively.
3. Experiments
Dataset We simulate a 2-speaker mixture dataset from the
VoxCeleb2 [2] dataset. The dataset splits are similar to [10].



Table 1. AVHuMAR-TSE and baseline performances on test set.

Model Cue Type SI-SDR(↑) SI-SDRi(↑) SDR(↑) PESQ(↑) STOI(↑)
AV-ConvTasNet[17] Lip 10.725 10.771 11.099 2.592 0.859
USEV[9] Lip 10.785 10.829 11.332 2.646 0.862
MuSE[10] Lip + Speaker 11.458 11.506 11.836 2.706 0.873

AVHuBERT-TSE Lip 11.728 11.771 12.043 2.765 0.878
AVHuMAR-TSE Lip 12.331 12.379 12.726 2.922 0.887

Additionally, all the utterances are clipped to 4 seconds dur-
ing training and 4-6 seconds during inference. For the sec-
ond training stage, a random segment of each utterance in
the training set will be masked with zero value. To find
the optimal mask duration of the proposed AVHuMAR-TSE
system, we simulate the mask duration gap equal to 100ms,
200ms, 300ms, 400ms, 500ms, and 600ms, respectively.
Each mask duration gap is applied to the entire training set.
Baselines and evaluation metrics Since the AVHuMAR-
TSE system is a time-domain AV-TSE system. To make
a fair comparison, we also select three time-domain AV-
TSE systems including AV-ConvTasNet [17], USEV [9],
and MuSE [10] as our baseline systems. For the evaluation
metrics, we select the SI-SDR [14], the SI-SDR improve-
ment (SI-SDRi), and the signal-to-noise ratio (SDR) [14]
as subjective metrics. We use the perceptual evaluation of
speech quality (PESQ) [13] and the short-term objective in-
telligibility STOI [16] as objective metrics. The higher the
better for all metrics.
Implementation details We re-implement three baseline
systems with float32 precision. The speaker extractor block
number R is 4. The scale factors (α, β, γ) are set to (1,5,1).
For the first training stage, we train 150 epochs with a learn-
ing rate of 0.00015. For the second training stage, we load
the best checkpoint from the first training stage and then
train for another 30 epochs with the same learning rate.
Both training stages are conducted on 3 32G V100 GPUs
with a batch size of 2.

4. Experimental results

4.1. Comparison with different baseline systems

As shown in Table 1, Compared to the baseline results,
our proposed AVHuMAR-TSE could achieve the best per-
formance in terms of all the metrics. With 12.331 on SI-
SDR, 12.726 on SDR, 2.922 on PESQ, and 0.887 on STOI.
Such results are significantly higher than the baseline re-
sults, which demonstrate the effectiveness of the cue en-
coder and the proposed MAR strategy.

To explore the improvements brought by each module,
we also report the performance of AVHuMAR-TSE with-
out MAR blocks. As shown in Table 1, the system could
still achieve 12.043 on SDR, 2.765 on PESQ, and 0.878 on
STOI, respectively. Both subjective and objective perfor-
mances are better than MuSE. Note that MuSE utilizes the

Table 2. Effect of different mask duration on SI-SDR
Mask Duration(ms) SI-SDR(↑) SI-SDRi(↑)

100 12.292 12.338
200 11.956 12.012
300 12.331 12.379
400 11.925 11.973
500 11.826 11.873
600 11.695 11.742

same visual cue for all mask estimators and still needs ad-
ditional speaker labels as input. It is worth noting that after
utilizing the MAR strategy, the SI-SDR can be further im-
proved from 11.728 to 12.331 while PESQ improved from
2.765 to 2.922, and STOI improved from 0.878 to 0.887.
4.2. Effect of different mask durations

To investigate the effect of various mask durations on the
final target speech extraction performance for AVHuMAR,
we report the SI-SDR and SI-SDRi with mask duration in-
creasing from 100 ms to 600 ms, with 100 ms as the interval.
As shown in Table 2, when the mask duration is set to 300
ms, AVHuMAR achieves the best performance in terms of
SI-SDR and SI-SDRi. Furthermore, the performances with
mask durations of 100 ms and 200 ms are slightly better
than the performances with mask durations of 400 ms and
above. Except for the mask duration equal to 600 ms, all
the SI-SDR and SI-SDRi results are higher than the results
without the MAR strategy.

With guidance from both intermediate estimated tar-
get speech context and target speaker lip movements, the
boundary of the masked region could be relatively easy to
recover. However, the center area of the masked region
could be hard to recover even with guidance from both
modalities. Based on this analysis, too much gap could not
be conducive to the MAR strategy. On the contrary, it may
even bring some adverse effects. The model may learn some
corrupted audio-visual correlations and the overall model
weights might be biased towards the recovery task and for-
get the TSE knowledge learned in the first training stage.

4.3. Case study on AVHuMAR-TSE results

As shown in Fig 2, we visualize two cases. For case
1, AVHuMAR-TSE could achieve 13.943 in terms of SI-
SDR while MuSE could only achieve -0.105. We mark
three obvious extraction failed regions with green boxes in



the second spectrogram from MuSE including one high-
frequency part and two low-frequency parts. For case 2,
MuSE achieves SI-SDR with 7.931 while the AVHuMAR-
TSE system could achieve 12.993. This time MuSE extracts
the coarse target speech but still lacks certain low-frequency
components, as indicated in the left-bottom box. Addition-
ally, MuSE mistakenly extracts some high-frequency parts
from another speaker, as highlighted in the right-top box.

Figure 2. Comparison of target speech spectrograms extracted by
AVHuMAR-TSE system and MuSE system.

5. Conclusion
In this study, we integrate pre-trained AV-HuBERT lay-

ers into the AV-TSE system as cue encoder and further
propose the AVHuMAR-TSE system with MAR strategy.
When compared to three time-domain AV-TSE systems,
AVHuMAR shows substantial performance advancements
in both subjective and objective metrics. The outcomes sup-
port the effectiveness of the cue encoder and the MAR strat-
egy in enhancing audio-visual synchrony and speech con-
text association. Through experiments, we find that an ap-
propriate mask duration is crucial for the MAR strategy. In
future work, we aim to further explore how the MAR strat-
egy could align audio-visual latent feature space and expand
our AVHuMAR-TSE system to various mixture scenarios.
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